Features

- OVC III and PD3 up to 5000m altitude
- 85-528VAC input range

LPS limited power source

• -40°C to +90°C operating temperature

Regulated Converter

- EN55032 class "B"; floating outputs
- No load power consumption <0.3W

Description

The RAC15-K/480 series AC/DC modules with ultra-wide input range of 100-480 VAC are specially designed for harsh industrial conditions of overvoltage category OVC III and pollution degree PD3 in both single-phase and phase-to-phase power connections of class II. These power supplies are capable of operating over a wide temperature range of -40° to 90°C (up to 60°C without derating) by just adding an external fuse, and offer LPS limited outputs with continuous overcurrent protection and emission class B EMC compliance in potential free configuration of the load. These silicone-free encapsulated modules are built extremely compact to fit on printed circuit boards without compromising board area. Global safety certifications ensure fast time-to-market when integrated into applications for markets such as Smart Grid, Smart Metering, Renewable Energy; Sensors and actuators or IoT applications.

Selection Guide							
Part Number	Input Voltage Range	Output Voltage	Output Current	Efficiency typ ⁽¹⁾	Max. Capacitive Load ⁽¹⁾		
	[VAC]	[VDC]	[mA]	[%]	[μF]		
RAC15-05SK/480	85-528	5	3000	86	20000		
RAC15-12SK/480	85-528	12	1250	84	12000		
RAC15-15SK/480	85-528	15	1000	85	10000		
RAC15-24SK/480	85-528	24	625	87	6000		
RAC15-12SK/480 RAC15-15SK/480	85-528 85-528 85-528 85-528	5 12 15	3000 1250 1000	86 84 85	20000 12000 10000		

Notes:

Note1: Is tested at 230VAC input and constant resistive load at +25°C ambient

Model Numbering

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

Parameter	Conditio	n	Min.	Тур.	Max.
Neminal Insuit Valtage (2)	F0/001	_	100\/AC		277VAC
Nominal Input Voltage (2)	50/60H	100VAC		480VAC	
Innut Valtaga Danga (3)	47-63H	85VAC		528VAC	
Input Voltage Range (3)	DC	120VDC		750VDC	
Input Current	115/230V			500mA	
Input Current	480VA0			400mA	
		115VAC			20A
Inrush Current	cold start	230VAC			40A
		480VAC			50A
Notes:					
Note2: 4	480VAC limited to L-L of	connections			
Note3:	The products were subi	nitted for safety f	iles at AC-Input (operation	

continued on next page

RAC15-K/480

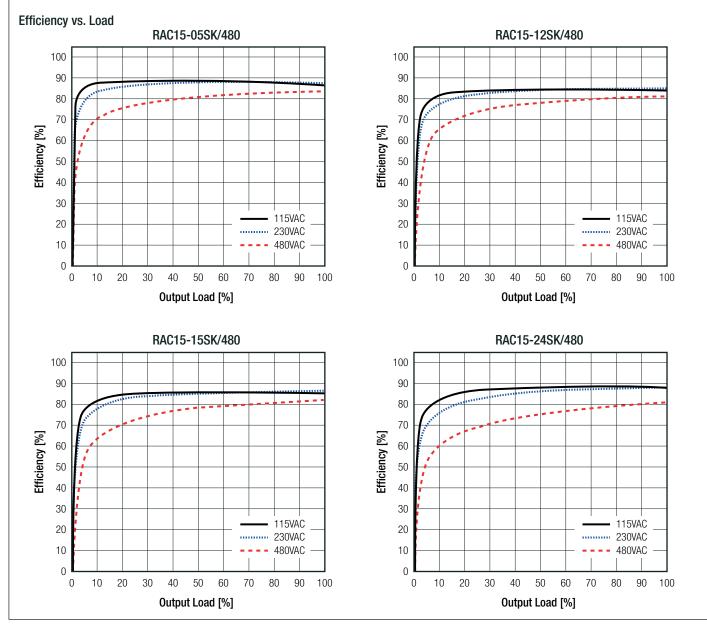
IEC/EN62368-1 certified UL62368-1 certified CAN/CSA-C22.2 No. 62368-1-14 certified IEC/EN61010 certified IEC/EN60335-1 pending EN62233 pending EN55032 compliant EN55035 compliant CB Report

CODICO GmbH

Zwingenstraße 6-8, 2380 Perchtoldsdorf, Austria Telefon: +43 1 86 305-0, Fax: +43 1 86 305-5000 e-mail: office@codico.com, www.codico.com FN 436940i, Landesgericht Wr. Neustadt

Zertifiziert nach ISO 9001:2008

RAC15-K/480

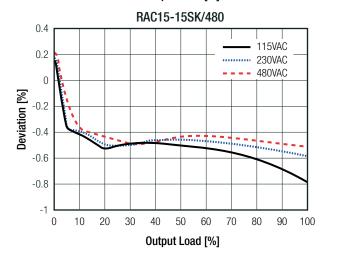

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

Series

BASIC CHARACTERISTICS					
Parameter	Con	Condition		Тур.	Max.
No Load Power Consumption	85-5	28VAC			300mW
Input Frequency Range	AC	Input	47Hz		63Hz
Minimum Load			0%		
	115/2	230VAC	0.4		
Power Factor	480	DAVC	0.3		
Start-up Time				150ms	
Rise Time				30ms	
Hold-up Time	230	OVAC	30ms		
Internal Operating Frequency				50kHz	
Output Dipple and Naisa (4)		$V_{OUT} = 5VDC$			100mVp-p
Output Ripple and Noise (4)	20MHz BW	others			1% of V _{OUT}

Notes:

Note4: Measurements are made with a 0.1µF MLCC & 10µF E-cap in parallel across output (low ESR).



RAC15-K/480

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

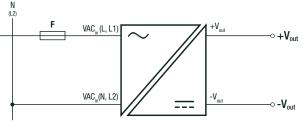
Series

Parameter	Cor	ndition		Valu
Dutput Accuracy				±3.0% max
ine Regulation	low line	to high line		±2.0% ty
oad Regulation ⁽⁵⁾	10% to	100% load		2.0% ty
ransient Response	25% load	d step change		4.0% ma
	reco	very time		1 ms ty
Notes:				
Note5: Operation	on below 10% load will not ha	arm the converter, but spe	ecifications may not be	met
Deviation vs. Load				
BAC15-05SK/48	0	0	RAC15-12	2SK/480
-0.2	115VAC			115VAC
	230VAC	-0.2		230VAC
-0.4	 480VAC	-0.4		480VAC
-0.6		<u>ş</u> 0.6		
E -0.8		<u>5</u> 0.0		
		8.0- iatio		
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	and an and a star	6.0- [%] 8.0- I 1- Deviation		
-1.2		-1.2		and the second s
-1.4				
-1.6		-1.4		
-1.8 0 10 20 30 40 50 60	70 80 90 100	-1.6 L	20 30 40 50	
Output Load [%		0 10	20 30 40 30 Output L	
RAC15-15SK/48	-		RAC15-24	
0.4		0	nAU10-24	
	115VAC			115VAC
0.2	230VAC	-0.2		230VAC

Deviat		\		-									
De	-1									1.1.1.1			-
	-1.2				_					+		·····	
	-1.4				_				_				
	-1.6												
	() 1	0	20	30			50	60	70	80	90	100
							utput						
	0					RAC	15-2	24SI	(/48	0			
											– 115	 5VAC	
	-0.2								-		230	OVAC .	
	-0.4				_						- 480	DVAC	_
Deviation [%]	-0.6												
atior													
Devi	-0.8	N.											
	-1				-								
	-1.2		~~~									-	
	1 /												
	-1.4 () 1	0	20	30	4	0	50	60	70	80	90	100
						0ι	utput	Loa	d [%]	I			

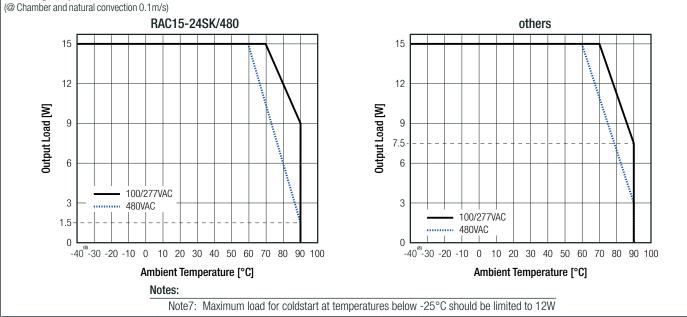
PROTECTIONS					
Parameter	Туре	Value			
Input Fuse	external (refer to "Protection Circuit")	T2A, 600VAC min.			
Limited Power Source (LPS)	according to IEC62368-1 CB Report	yes			
Short Circuit Protection (SCP)	below 100mΩ	hiccup, auto recovery			
Over Voltage Protection (OVP)		105% - 120%, hiccup mode			
Over Current Protection (OCP)		128% - 155%, hiccup mode			
Over Voltage Category	according to 61010-1	OVCIII (up to 5000m)			

continued on next page


RAC15-K/480

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)


Parameter	Туј	pe	Value	
	tested for 1 minute		3.6kVAC	
Isolation Voltage (6)	tested for 5 seconds	I/P to O/P	5.4kVAC	
Isolation Resistance			1GΩ max.	
Isolation Capacitance			200pF max.	
Insulation Grade			reinforced	
Leakage Current			200µA max.	
Protection Circuit	Notes: Note6: For repeat Hi-Pot testing, reduce the time and/or the test voltage			

An external fuse is mandatory in order to protect the device in addition on the AC input side. RECOM recommend: slow blow type, 600VAC, 2A

ENVIRONMENTAL				
Parameter	(Condition		Value
Operating Temperature Range (7)	refer to "L	Derating Graph ⁽⁷⁾ "		-40°C to +90°C
Maximum Case Temperature				+105°C
Temperature Coefficient				0.02%/K
Operating Altitude				5000m
Operating Humidity	non-condensing			95% RH max.
Polution Degree				PD3
Vibration	according	to MIL-STD-202G		10-500Hz, 2G 10min./1cycle, 60min. each along x,y,z axes
Design Lifetime	230VAC/50Hz	+50°C		30 x 10 ³ hours
		$V_{OUT} = 5, 12VDC$	+25°C	1450 x 10 ³ hours
MTBF	according to	V _{out} = 15, 24VDC	+23 0	1720 x 10 ³ hours
	MIL-HDBK-217F, G.B.	V _{out} = 5, 12VDC	-+40°C	1310 x 10 ³ hours
		V _{0UT} = 15, 24VDC	+40°0	1470 x 10 ³ hours

Derating Graph (7)

RAC15-K/480

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

Series

SAFETY AND CERTIFICATIONS				
Certificate Type (Safety)		Report Number	Standard	
Audio/Video, information and communication technology equipment - Safety requirements	io/Video, information and communication technology equipment - Safety requirements			
Audio/Video, information and communication technology equipment - Safety requirement	ts (CB)	011110011	IEC62368-1:2014 2nd Editior	
Audio/Video, information and communication technology equipment - Safety requirements	s (LVD)	211112011	EN62368-1:2014 + A11:2017	
Audio/Video, information and communication technology equipment - Safety requirements	s (CB)	011110010	IEC62368-1:2018 3rd Editior	
Audio/Video, information and communication technology equipment - Safety requirements	S	211112010	EN/IEC62368-1:2020 + A11:2020	
Electrical Equipment For Measurement, Control, and Laboratory Use; Part 1: General Requ	uirements	085-210569501-000	IEC61010-1:2010 3rd Edition + A1:2016	
Electrical Equipment For Measurement, Control, and Laboratory Use; Part 1: General Requ	uirements	64.210.21.05695.01	EN61010-1:2010 + A1:2019	
Household and similar electrical appliances – Safety – Part 1: General requirements		pending	IEC60335-1:2010 EN60335-1:2012	
Measurement methods for electromagnetic fields of household appliances and similar app with regard to human exposure	paratus	pending	EN62233:2008	
EAC			TP TC 004/2011	
RoHS2			RoHS-2011/65/EU + AM-2015/863	
EMC Compliance (EN55032) ⁽⁸⁾		Condition	Standard / Criterion	
Electromagnetic compatibility of multimedia equipment - Emission requirements		oonanion	EN55032:2015 + A11:2020, Class B	
Electromagnetic compatibility of multimedia equipment – Immunity requirements	-		EN55035:2017 + A11:2020	
ESD Electrostatic discharge immunity test		Air: ±2, 4, 8kV ontact: ±2, 4kV	EN61000-4-2:2009, Criteria A	
Radiated, radio-frequency, electromagnetic field immunity test	-	/m (80-5000MHz)	EN61000-4-3:2006 + A2:2010, Criteria A	
Fast Transient and Burst Immunity		ort: L, N, L-N \pm 1kV	EN61000-4-4:2012, Criteria A	
Surge Immunity	AC Port: L-N: ±1kV		EN61000-4-5:2015, Criteria A	
Immunity to conducted disturbances, induced by radio-frequency fields	3-1	: 3Vrms (0.15-10MHz) Vrms (10-30MHz)	EN61000-4-6:2014, Criteria A	
Device Many eth Field Issues: h	11	(rms (30-80MHz)		
Power Magnetic Field Immunity	1(1A/m	EN61000-4-8:2010, Criteria A	
Voltage Dips)0% (0.5P, 0.5P) 30% (25P, 30P)	EN61000-4-11:2004, Criteria A EN61000-4-11:2004, Criteria A	
Voltage Interruptions		0% (250P/300P)	EN61000-4-11:2004, Criteria B	
•				
EMC Compliance (EN61204-3) ⁽⁸⁾		Condition	Standard / Criterion	
Low voltage power supplies, d.c. output Part 3: Electromagnetic compatibility (EMC) ESD Electrostatic discharge immunity test		Air: ±2, 4, 8kV Contact: ±4kV	EN IEC 61204-3:2018 EN61000-4-2:2009, Criteria A	
Radiated, radio-frequency, electromagnetic field immunity test	10V 3V/n	(m (80-1000MHz) n (1400-2000MHz) n (2000-2700MHz)	EN61000-4-3:2006 + A2:2010, Criteria A	
Fast Transient and Burst Immunity		ort: L, N, L-N ±2kV	EN61000-4-4:2012, Criteria A	
Surge Immunity		Port: L-N: ±1kV	EN61000-4-5:2014 + A1:2017, Criteria A	
Immunity to conducted disturbances, induced by radio-frequency fields			EN61000-4-6:2014, Criteria A	
Power Magnetic Field Immunity		30A/m	EN61000-4-8:2010, Criteria A	
/oltage Dips		00% (0.5P, 0.5P) 00% (1.0P, 1.0P) 60% (10P, 12P) 30% (25P, 30P) 0% (250P, 300P)	EN61000-4-11:2004 + A1:2017, Criteria A	
Notes:			1	

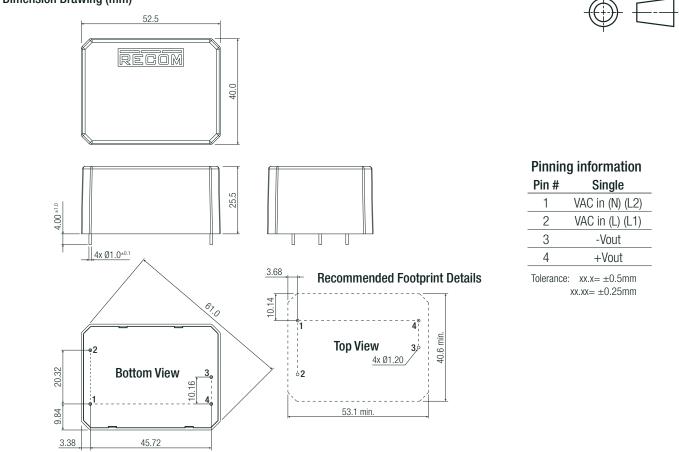
Notes:

Note8: With earth referenced output connections, use of an external common mode choke 45mH (E-type) may be considered at the input.

continued on next page

RAC15-K/480

RECOM AC/DC Converter


Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

EMC Compliance (EN61204-3) ⁽⁸⁾	Condition	Standard / Criterion
Voltage Interruptions	100% (250P, 300P)	EN61000-4-11:2004 + A1:2017, Criteria B
Limits of Harmonic Current Emissions		EN IEC 61000-3-2:2019
Limits of Harmonic Current Emissions		EN61000-3-2:2014
Limits of Voltage Fluctuations & Flicker		EN61000-3-3:2013 + A1:2019

DIMENSION AND PHYSICAL CHARACTERISTICS				
Parameter	Туре	Value		
	case/baseplate	polycarbonate, (UL94V-0)		
Material	potting	PU, (UL94V-0)		
	PCB	FR4, (UL94V-0)		
Dimension (LxWxH)		52.5 x 40.0 x 25.5mm		
Weight		92g typ.		

Dimension Drawing (mm)

PACKAGING INFORMATION		
Parameter	Туре	Value
Packaging Dimension (LxWxH)	tube	56.0 x 40.0 x 490.0mm
Packaging Quantity		11pcs
Storage Temperature Range		-40°C to +90°C
Storage Humidity	non-condensing	95%

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.