

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-19201080M2TZQW-00
APPROVED BY	
DATE	

□ Preliminary Specification☑ Formal Specification

AMPIRE CO., LTD. 4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.) 新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟) TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

Approved by	Checked by	Organized by
Patrick	Lawlite	Kokai

This Specification is subject to change without notice.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2020/10/05 2021/7/29 2021/8/23	 4,16 3,19,20 5 7 11,13 14 15 15	New Release Modify Temperature range data. Update Outline dimension drawing Update the IDD PDD, Add VDDrp Update Back-light unit data. Update Optical Specifications Update LVDS connector pin1 diagram. Update LED driver Board drawing. Update LED driver Board Interface	Mantle Kokai Kokai

1.0 General Descriptions

1.1 Introduction

It's a 21.5 inch wide color TFT-LCD module, the display supports the Full HD-1920 X 1080 resolution and have 16.7M colors(RGB 8-bits).

1.2 Features

- 5V Logic Power
- LVDS (2ch) Interface for 1920 RGB x 1080 resolution
- 16.7M colors (RGB 8 bits)
- Green Product (RoHS)

1.3 Product Summary

Items	Specifications	Unit
Screen Diagonal	21.5	Inch
Active Area	476.64 (H) ×268.11 (V)	mm
Pixel Format	1920 (H) x RGB x 1080 (V)	-
Pixel Pitch	0.24825 (H) X 0.24825 (V)	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally Black	-
White Luminance	1000 (Тур)	cd /m2
Contrast Ratio	5000 : 1 (Typ)	-
Input Voltage	+5.0	V
Outline Dimensions	495.6x292.2Vx24.05	mm
Support Color	16.7M	-
Weight	1630(± 175)	g

2.0 Absolute Maximum Ratings

	SVMBOI	VALU	JES		REMAR
	STIMBOL	MIN	MAX	UNIT	К
Logic / LCD Drive	VDD	0	5.5	V	
Operation Temperature	T _{op}	0	80	°C	
Operation Humidity	H _{OP}	5	90	%RH	
Storage Temperature	T _{st}	-20	80	°C	
Storage Humidity	H _{ST}	5	90	%RH	

Note 1: With in Ta (25℃)

Note 2: Permanent damage to the device may occur if exceeding maximum values Note 3: Operation Temperature + 80°C is defined as panel surface temperature.

3.0 ELECTRICAL SPECIFICATIONS

3.1 LCD ELECTRONICS SPECIFICATION

Deremeter	Symbol		Value	Lloit	Niete	
Falameter	Symbol	Min	Тур.	Max.	Unit	Note
Power Supply Voltage	VDD	4.5	5.0	5.5	V	-
Rush Current	IRUSH	-	-	3	A	(2)
VDD Current	IDD	-	0.7	0.8	A	(3)
VDD Current	IDD	-	0.81	0.89	A	(4)
VDD Power	PDD	-	3.5	4.4	Watt	(3)
VDD Power	PDD	-	4.05	4.9	Watt	(4)
Allowable Logic/LCD Drive Ripple Voltage	VDDrp	-	-	500	[mV]p-p	(4)

Note(1) The ambient temperature is $Ta = 25 \pm 2^{\circ}C$

Note(2) Measurement Conditions:

Note(3) VDD= 5.0V,All white pattern, At 60Hz Note(4) VDD= 5.0V,All white pattern, At 75Hz

3.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when VDD is off.

Symbol	Item	Min.	Тур.	Max.	Unit	Remark
VTH	Differential Input High	-	-	+100	mV	VCM=1.2V
	Threshold					
VTL	Differential Input Low	-100	-	-	mV	VCM=1.2V
	Threshold					
VID	Input Differential	100	-	600	mV	
	Voltage					
VICM	Differential Input	+1.0	+1.2	+1.5	V	VTH/VTL=±100mV
	Common mode					
	Voltage					

Note: LVDS Signal waveform.

3.3 Backlight Unit

Symbol	Item	Min.	Тур.	Max.	Unit	Remark
VLED	Input Voltage	10.8	12	13.2	Volt	
ILED	Input Current	-	3.42		А	100% Dimming
PLED	Power Consumption	-	41.04		wat	100% Dimming
Irush	Inrush Current	-	-	4	А	
Backlight	on control voltage	2.0	-	5.5	V	
on/off	off control voltage	0	-	0.8	V	
Backlight	PWM Dimming	90	180	240	Hz	
Dimming	High Voltage	2.0	-	3.3	V	
(PWM	Low Voltage	0	-	0.8	V	
dimming)	Dimming Duty Cycle		-	100	%	
lf	LED Forward Current		50		mA	Та=25° С
Life time		50,000	-	-	Hrs	Ta=25℃

Note 1: Ta means ambient temperature of TfT-LCD module.

Note 2: If TFT-LCD module is driven at high ambient temperature & Humidity condition. Theoperating life will be reduced.

Note 3: Definition of life time: Brightness becomes to 50% of its original value. The minimum life time of LED unit is on the condition of IF = 50 mA and 25 °C (Room Temperature).

Note 4: LED light bar structure: (2 Light bar x 4 strings x 20pcs / string =160pcs LED)

4. Interface Timings

4.1 Timing Characteristics

Signal	Parameter		Symbol	Min.	Тур.	Max.	Unit
Clock Timing	Clock frequ	ency	1/Tclock	40	72	83	Mhz
Vsynctiming	Vertical	Period	Tv	1092	1130	1653	Tline
	section	Active	Tvd	1080	1080	1080	
		Blanking	Tvb	12	50	573	
Hsync	Horizontal	Period	Th	1004	1050	1100	Tclock
Timing	Section	Active	Thd	960	960	960	
		Blanking	Thb	44	90	140	
Frame Rate			F	50	60	75	Hz

Note 1: DE mode only.

Note 2: Typical value refer to VESA STANDARD

4.2 Input Timing Diagram

4.3 POWER ON/OFF SEQUENCE

The power swquence specifications are shown as the following table and diagram.

Timing Specifications:

Devementer		Unite			
Parameter	Min.	Тур.	Max.	Units	
T1	0.5		10	[ms]	
Т2	30	40	50	[ms]	
Т3	200			[ms]	
Т4	0.5		10	[ms]	
Т5	10			[ms]	
T6	10			[ms]	
T7	0			[ms]	
Т8	10			[ms]	
Т9			10	[ms]	
T10	110			[ms]	
T11	0	16	50	[ms]	
T12			10	[ms]	
T13	1000			[ms]	

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector of pull the cable out of the connector.

4.4 The Input Data Format

5. Optical Specifications

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Ded	Rx			0.639			
	Red	Ry			0.334			
a .	Green	Gx			0.324			
Color	Green	Gy	$0 = 0^{\circ} 0 = 0^{\circ}$	Тур –	0.613	Typ +		(1) (1)
(CIF 1931)	Plue	Bx	$\theta_{x}=0^{\circ}, \theta_{Y}=0^{\circ}$	0.05	0.153	0.05	-	(1), (4)
	Diue	By	R=G=B=255		0.062			
	\\//bite	Wx	Gray scale		0.313			
	vvnite	Wy			0.329			
Center Lumina	ance of White	L _C		800	1000	-	cd/m ²	(4)
Contras	t Ratio	CR		3000	5000	-	-	(2), (4)
Pespons		T _R		-	20	25	me	(3)
Respons	se rime	T _F	0 _x =0 , 0 _Y =0	-	5	10	1115	(3)
Cross Ta	alk(in 60Hz)	СТ		-	-	1.5	%	(6)
Color Ga	amut	CG		-	72		%	
Unit	formity		9 points	75	80		%	(4) (5)
	Horizoptol	θ _x +		75	89			
Viewing Angle	Honzontai	θ _x -	CP > 10	75	89		Dog	(1), (4)
	Vertical	θ _Y +		75	89		Deg.	
	Vertical 0 _Y -			75	89			

The optical characteristics are measured under stable conditions as following notes

Note (1) Definition of Viewing Angle ($\theta x, \theta y$):

Contrast ratio (CR) = Luminance measured when LCD on the "White" state Luminance measured when LCD on the "Black" state Note (3) Definition of Response Time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note (4) Definition of optical measurement system.:

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Note (5) Definition of Luminance Uniformity

Note (6) Definition of Cross talk

 $CT = |YB - YA| / YA \times 100 (\%)$

Where

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

6. Interface Connections

6.1 LVDS

Connector Name /Designation	Signal Connector
Manufacturer	JAE or compatible
Connector Model Number	JAE(FI-XB30SRL-HF11) or equivalent
Mating Housing Part Number	FI-X30HL(JAE) or compatible

Pin	Name	Description
1	RXinO0-	Negative LVDS differential data input(Odd data)
2	RXinO0+	Positive LVDS differential data input(Odd data)
3	RXinO1-	Negative LVDS differential data input(Odd data)
4	RXinO1+	Positive LVDS differential data input(Odd data)
5	RXinO2-	Negative LVDS differential data input(Odd data,H-Sync, V-Sync, DSPTMG)
6	RXinO2+	Positive LVDS differential data input(Odd data,H-Sync, V-Sync, DSPTMG)
7	GND	Power Ground
8	RXOCLKIN-	Negative LVDS differential data input(Odd clock)
9	RXOCLKIN+	Positive LVDS differential data input(Odd clock)
10	RXinO3-	Negative LVDS differential data input(Odd data)
11	RXinO3+	Positive LVDS differential data input(Odd data)
12	RXinE0-	Negative LVDS differential data input(Even data)
13	RXinE0+	Positive LVDS differential data input(Even data)
14	GND	Power Ground
15	RXinE1-	Negative LVDS differential data input(Even data)
16	RXinE1+	Positive LVDS differential data input(Even data)
17	GND	Power Ground
18	RXinE2-	Negative LVDS differential data input(Even data)
19	RXinE2+	Positive LVDS differential data input(Even data)
20	RxECLKIN-	Negative LVDS differential data input(Even clock)
21	RxECLKIN+	Positive LVDS differential data input(Even clock)
22	RXinE3-	Negative LVDS differential data input(Even data)
23	RXinE3+	Positive LVDS differential data input(Even data)
24	GND	Power Ground
25	NC	No connect
26	NC	No connect
27	NC	No connect
28	VDD	Power 5V
29	VDD	Power 5V
30	VDD	Power 5V

6.2 LED

Connector Name /Designation	Signal Connector
Manufacturer	CVILUX
Connector Model Number	CI0110M1HRO-NH or equivalent

CN901				
Pin	Name	Description		
1	VLED	12V		
2	VLED	12V		
3	VLED	12V		
4	VLED	12V		
5	GND	Ground		
6	GND	Ground		
7	GND	Ground		
8	GND	Ground		
9	Backlight on\off	BL ON/OFF Enable		
10	Backlight dimming	3.3V PWM Control		

7. Reliability Test

The reliability test items and its conditions are shown below.

Test Item	Test Conditions	Note
High Temperature Operation	80±3°C, t=240 hrs	
Low Temperature Operation	0±3°C, t=240 hrs	
High Temperature Storage	80±3°C, t=240 hrs	1,2
Low Temperature Storage	-20±3°C, t=240 hrs	1,2
Storage at High Temperature and Humidity	50°C, 80% RH , 240 hrs	1,2
Thermal Shock Test	-20°C (30min) ~ 80°C (30min) , 100 cycles	1,2
Shock (Non-Operating)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Vibration	Acceleration: 1.5 Grms	
(Non-Operating)	Wave: Random	
	Frequency: 10 - 200 Hz	
	Duration: 30 Minutes each Axis (X, Y, Z)	

- Note (1) Condensation of water is not permitted on the module.
- Note (2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).
- Note (3) The module shouldn't be tested more than one condition, and all the test conditions are independent.
- Note (4) All the reliability tests should be done without protective film on the module. Definitions of life end point:
 - Current drain should be smaller than the specific value.
 - Function of the module should be maintained.
 - Appearance and display quality should not have degraded noticeably.
 - Contrast ratio should be greater than 50% of the initial value.

8. GENERAL PRECAUTION

8.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

8.2 Disassembling or Modification

Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. AMPIRE does not warrant the module, if customers disassemble or modify the module.

8.3 Breakage of LCD Panel

- (1) If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- (2) If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- (3) If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- (4) Handle carefully with chips of glass that may cause injury, when the glass is broken.

8.4 Electric Shock

- (1) Disconnect power supply before handling LCD module.
- (2) Do not pull or fold the LED cable.
- (3) Do not touch the parts inside LCD modules and the fluorescent LED's connector or cables in order to prevent electric shock.

8.5 Absolute Maximum Ratings and Power Protection Circuit

- (1) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- (2) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (3) It's recommended to employ protection circuit for power supply.

8.6 Operation

- (1) Do not touch, push or rub the polarizer with anything harder than HB pencil lead.
 - (2) Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- (3) When the surface is dusty, please wipe gently with absorbent cotton or other soft material.
- (4) Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may cause deformation or color fading.
- (5) When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzene or other adequate solvent.

8.7 Mechanism

Please mount LCD module by using mounting holes arranged in four corners tightly.

8.8 Static Electricity

- (1) Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- (2) Because LCD modules use CMOS-IC on circuit board and TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge. Persons who handle the module should be grounded through adequate methods.

8.9 Strong Light Exposure

The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

8.10 Disposal

When disposing LCD module, obey the local environmental regulations.

8.11 Others

Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.

9. Outline Dimension

Date: 2021/8/23

AMPIRE CO., LTD.