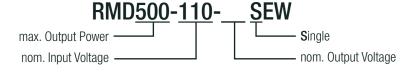
# **Features**

# Regulated Converter

- Fully railway approved for EN50155 (S2) applications
- EN50121-3-2, EN50124-1, EN62368-1, EN61373, EN45545-2
- Plug&Play unit for natural convection cooling
- Wide range input for nominal 72V and 110V
- Excellent efficiency and functionality
- Parallel and redundant operation
- Extremely reliable and robust

## Description

The chassis mountable RMD500 series DC/DC converter is designed for railway rolling stock and transportation applications. The unit is designed with 4:1 input voltage range to cover the input voltages from 43.2VDC up to 170VDC for nominal 72V and 110V in one range with isolated and regulated 24V output, based on a reinforced isolation system. The converter has a constant and high efficiency of 95%, and the base plate mounting permits a wide operating temperature for 0T4+ST1&ST2 class from -40°C to +85°C without derating. Input reverse polarity protection, inrush current limitation, 10ms hold-up time, remote control, and output OR-ing diode round up the functionality of this fully railway compliant Plug&Play unit.


| Selection Guide  |                                 |                                 |                               |                                          |                        |
|------------------|---------------------------------|---------------------------------|-------------------------------|------------------------------------------|------------------------|
| Part<br>Number   | Input<br>Voltage Range<br>[VDC] | nom. Output<br>Voltage<br>[VDC] | max. Output<br>Current<br>[A] | Efficiency<br>typ. <sup>(1)</sup><br>[%] | Output<br>Power<br>[W] |
| RMD500-110-24SEW | 50.4 - 137.5                    | 24                              | 21                            | 95                                       | 500                    |

#### Notes:

Note1: Efficiency is tested at nominal input and 50%-100% +25°C ambient

## **Model Numbering**

DACIC CHADACTEDISTICS



## Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

| Parameter             |                           | Condition                         |                      | Min.    | Тур.  | Max.     |
|-----------------------|---------------------------|-----------------------------------|----------------------|---------|-------|----------|
| Input Voltage Range   |                           |                                   | nom. V <sub>IN</sub> | 50.4VDC | 72VDC | 137.5VDC |
|                       | refer to "Input           | according to<br>EN50155           | for 100ms max.       | 43.2VDC |       |          |
| Innut Curan Valtage   | Voltage<br>Range"         | LINSUISS                          | for 1s               |         |       | 154VDC   |
| Input Surge Voltage   | nango                     | for 3s max. (extended to EN50155) |                      |         |       | 170VDC   |
| Input Capacitance     | internal                  |                                   |                      |         | 11µF  |          |
| Under Veltage Leekeut | rising edge               |                                   |                      | 45.3VDC |       | 50.4VDC  |
| Under Voltage Lockout | falling edge              |                                   |                      | 35VDC   |       | 43.2VDC  |
|                       | V <sub>IN</sub> = 43.2VDC |                                   |                      |         | 12A   |          |
| Input Current Range   | V <sub>IN</sub> = 72VDC   |                                   |                      |         | 7.5A  |          |
|                       | V <sub>IN</sub> = 110VDC  |                                   |                      |         | 5A    |          |
| Inrush Current        | active                    | e inrush current lin              | nitation             |         |       | 20A      |
| No Load Power         |                           | V <sub>IN</sub> = 72VDC           |                      |         | 8.5W  |          |
| Consumption           | V <sub>IN</sub> = 110VDC  |                                   |                      |         | 8.7W  |          |



## RMD500-EW

# 500 Watt 8.23"x5.56" Single Output









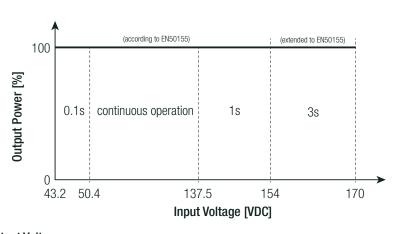
IEC/EN62368-1 pending
EN50124-1 pending
EN45545-2 pending
EN50155 pending
EN50121-3-2 compliant
EN55011 compliant
IEC/EN61000-4-2,3,4,5 compliant



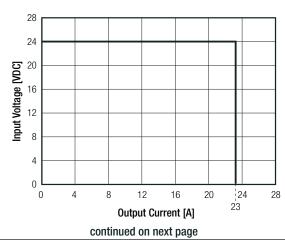
#### **CODICO GmbH**

Zwingenstraße 6-8, 2380 Perchtoldsdorf, Austria Telefon: +43 1 86 305-0, Fax: +43 1 86 305-5000 e-mail: office@codico.com, www.codico.com FN 436940i, Landesgericht Wr. Neustadt

Zertifiziert nach ISO 9001:2008



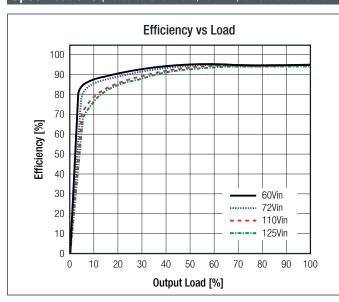

# **Series**

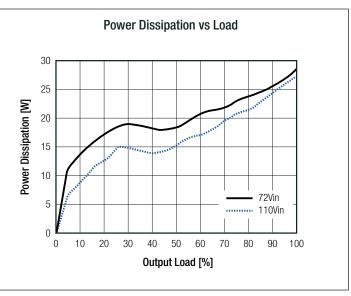

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

| Parameter                    | Condition                                        | Min.    | Тур.           | Max.                       |
|------------------------------|--------------------------------------------------|---------|----------------|----------------------------|
|                              | V <sub>IN</sub> = 50.4VDC                        |         | 7.2mA          | 11100                      |
| Standby Current              | V <sub>IN</sub> = 72VDC                          |         | 6.6mA          |                            |
| (shutdown by remote)         | V <sub>N</sub> = 110VDC                          |         | 6.8mA          |                            |
|                              | V <sub>IN</sub> = 137.5VDC                       |         | 7.5mA          |                            |
| Output Current Range         | parallel operation refer to "PARALLEL OPERATION" | 0A      |                | 21A                        |
| Output Voltage               |                                                  |         | 24VDC          |                            |
| Output Voltage Trimming      | refer to "OUTPUT VOLTAGE TRIMMING"               | 19.2VDC |                | 25.2VDC                    |
| Minimum Load                 |                                                  |         | 0%             |                            |
|                              | V <sub>IN</sub> = 72VDC                          |         |                | 1s                         |
| Start-up Time                | V <sub>IN</sub> = 110VDC                         |         |                | 0.6s                       |
|                              | by using CTRL ON/OFF function                    |         |                | 0.3s                       |
| Rise Time                    |                                                  |         | 100ms          |                            |
|                              | V <sub>IN</sub> = 72VDC                          |         | 16ms           |                            |
| Hold-up Time                 | V <sub>N</sub> = 110VDC                          |         | 20ms           |                            |
|                              | V <sub>IN</sub> = 137.5VDC                       |         | 23ms           |                            |
| ON/OFF OTDI                  | DC-DC ON                                         | high/c  | pen or 12VDC < | V <sub>CTRL</sub> <154VDC  |
| ON/OFF CTRL                  | DC-DC OFF (pin15 INH connected pin16 INH0)       |         | low or -2VDC   | < V <sub>CTRL</sub> < 2VDC |
| Input Current of CTRL pin    | DC-DC ON                                         |         | 10mA           |                            |
| Internal Operating Frequency |                                                  |         | 70kHz          |                            |
| Output Ripple and Noise      | over full input and load range, 20MHz BW         |         |                | 50mVp-p                    |
| Maximum Capacitive Load      |                                                  |         | 50mF           |                            |

## Input Voltage Range

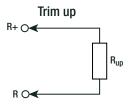


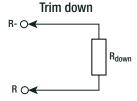

## Constant Current / Constant Voltage






**Series** 


Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)






#### **OUTPUT VOLTAGE TRIMMING**

The output voltage of the RMD500-EW can be trimmed between 19.2VDC and 25.2VDC by using an external trim resistor. The values for the trim resistor are according to standard E96 values; therefore, the specified voltage may slightly vary. Resistor values may be calculated with the following equation:





#### Calculation:

 $Vout_{nom}$  = nominal output voltage [VDC]

Vout<sub>set</sub> = trimmed output voltage [VDC]

 $R_{iin}$  = trim up resistor  $[\Omega]$ 

 $R_{down} = trim down resistor [\Omega]$ 

$$R_{up} \cong \frac{322k\Omega \times V_{OUTset} - 306k\Omega \times V_{OUTnom}}{V_{OUTset} - V_{OUTnom}}$$

$$R_{down} \cong \frac{20k\Omega \times V_{OUTset} - 16k\Omega \times V_{OUTnom}}{V_{OUTnom} - V_{OUTset}}$$

## Practical Example trim up +5%

$$\mathbf{R}_{up} \cong \begin{bmatrix} \frac{322 k\Omega \times 25.2 \text{V} - 306 k\Omega \times 24}{25.2 - 24} \end{bmatrix} = \mathbf{642} \mathbf{k} \Omega$$

 $\mathbf{R}_{\text{up}}$  according to E96  $\cong \underline{\mathbf{649k}\Omega}$ 

#### Practical Example trim down -10%

$$\mathbf{R}_{\text{down}} \cong \left[ \frac{20 \text{k}\Omega \times 21.6 \text{V} - 16 \text{k}\Omega \times 24}{24 - 21.6} \right] = \mathbf{1978}\Omega$$

 $\mathbf{R}_{\text{down}}$  according to E96  $\cong$  1k96 $\Omega$ 

| Trim up                 | 1     | 2     | 3     | 4     | 5    | [%]   |
|-------------------------|-------|-------|-------|-------|------|-------|
| Vout <sub>set</sub> =   | 24.24 | 24.48 | 24.72 | 24.96 | 25.2 | [VDC] |
| R <sub>up</sub> (E96) ≈ | 1M91  | 1M13  | 845k  | 715k  | 649k | [Ω]   |

| Trim down                  | 1     | 2     | 3     | 4     | 5    | 6     | 7     | 8     | 9     | 10   | [%]   |
|----------------------------|-------|-------|-------|-------|------|-------|-------|-------|-------|------|-------|
| Vout <sub>set</sub> =      | 23.76 | 23.52 | 23.28 | 23.04 | 22.8 | 22.56 | 22.32 | 22.08 | 21.84 | 21.6 | [VDC] |
| $R_{down}$ (E96) $\approx$ | 383k  | 182k  | 113k  | 80k6  | 60k4 | 46k4  | 37k4  | 30k1  | 24k3  | 20k  | [Ω]   |
| Trim down                  | 11    | 12    | 13    | 14    | 15   | 16    | 17    | 18    | 19    | 20   | [%]   |
| Vout <sub>set</sub> =      | 21.36 | 21.12 | 20.88 | 20.64 | 20.4 | 20.16 | 19.92 | 19.68 | 19.44 | 19.2 | [VDC] |
| R <sub>down</sub> (E96) ≈  | 16k2  | 13k3  | 10k7  | 8k45  | 6k65 | 4k99  | 3k48  | 2k21  | 1k05  | 0    | [Ω]   |



# **Series**

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

| REGULATIONS        |                                           |                       |  |  |  |
|--------------------|-------------------------------------------|-----------------------|--|--|--|
| Parameter          | Condition                                 | Value                 |  |  |  |
| Output Accuracy    |                                           | ±1.0% max.            |  |  |  |
| Line Regulation    | low line to high line, full load          | 0.1%                  |  |  |  |
| Load Regulation    | 10-100% load                              | 0.1% typ. / 0.2% max. |  |  |  |
| Transient Response | 10-90% load, V <sub>N</sub> = 50.4-137VDC | 0.5VDC                |  |  |  |
|                    | recovery time                             | 40ms typ.             |  |  |  |

| PROTECTIONS                       |                         |                                                |                              |
|-----------------------------------|-------------------------|------------------------------------------------|------------------------------|
| Parameter                         |                         | Туре                                           | Value                        |
| Input Fuse                        |                         | internal                                       | T15A, slow blow type         |
| Short Circuit Protection (SCP)    | constar                 | t current mode, auto recovery                  | >110% of nom. output current |
| 01 10: 11 10 1                    |                         | V <sub>IN</sub> = 72VDC                        | 0.6A                         |
| Short Circuit Input Current       |                         | V <sub>IN</sub> = 110VDC                       | 0.4A                         |
| Input Reverse Polarity Protection |                         | active protected                               | 137.5VDC                     |
| Over Voltage Protection (OVP)     |                         | latch off                                      | 27.5VDC - 32.5VDC            |
| Over Voltage Category (OVC)       | acco                    | ording to EN50124-1:2018                       | OVCIII                       |
| Over Current Protection (OCP)     |                         | auto recovery                                  | 23A - 25.2A                  |
| Over Temperature Protection (OTP) | S                       | nut down, auto recovery                        | $T_{AMB} = >90^{\circ}C$     |
| Class of Equipment                |                         |                                                | Class I                      |
| Isolation Coordination            | acco                    | ording to EN50124-1:2018                       | V <sub>NOM</sub> = 300VDC    |
|                                   |                         | I/P to O/P                                     | 5kVDC / 3.5kVAC              |
| location Voltage (2)              | rated                   | I/P to PE and O/P to PE                        | 3kVDC / 2kVAC                |
| Isolation Voltage (2)             | valida taat             | I/P to O/P, for 10 seconds                     | 3kVAC                        |
|                                   | routine test            | I/P to PE and O/P to PE, 10 seconds            | 2.8kVDC                      |
| Isolation Resistance              |                         |                                                | 100M $\Omega$ max.           |
| Isolation Capacitance             |                         |                                                | 650pF max.                   |
| Leakage Current                   |                         |                                                | 10μΑ                         |
| Insulation Grade                  |                         |                                                | reinforced                   |
|                                   |                         | I/P to O/P                                     | 6mm                          |
| Internal Clearance                |                         | I/P to PE                                      | 4mm                          |
|                                   |                         | O/P to PE                                      | 3mm                          |
| Note                              |                         |                                                | -                            |
| <u>I</u>                          | Note2: For repeat Hi-Po | ot testing, reduce the time and/or the test vo | oltage                       |

| POWER GOOD       |                           |                 |
|------------------|---------------------------|-----------------|
| Parameter        | Condition                 | Value           |
| Dower OV LED     | V <sub>OUT</sub> = >17VDC | green           |
| Power OK LED     | V <sub>OUT</sub> = <17VDC | light off       |
| Dalay Ctatus     | V <sub>OUT</sub> = >17VDC | OK pin1 open    |
| Relay Status     | V <sub>OUT</sub> = <17VDC | NOK pin1 closed |
| Relay Capability |                           | 0.5A/150VDC     |

www.recom-power.com REV.: 0/2022 PD-4



# **Series**

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

| ENVIRONMENTAL                 |                                                      |                                   |                              |  |  |
|-------------------------------|------------------------------------------------------|-----------------------------------|------------------------------|--|--|
| Parameter                     | Condition                                            |                                   | Value                        |  |  |
|                               |                                                      | with derating                     | -40°C to +90°C               |  |  |
| Operating Temperature Range   | according to EN50155 operating temperature class OT4 | without derating                  | -40°C to +70°C               |  |  |
|                               | and extended operating temperature class ST1 & ST2   | without derating for 15 minutes   | -40°C to +85°C               |  |  |
| Maximum Baseplate Temperature | refer to "tc point"                                  |                                   | +95°C                        |  |  |
| Temperature Coefficient       |                                                      |                                   | 0.2%/K                       |  |  |
| Operating Altitude            | according to EN50124-1:2                             | 2000m (OVP III)<br>5000m (OVP II) |                              |  |  |
| Operating Humidity            |                                                      | 95% RH                            |                              |  |  |
| Conformal Coating (3)         | according to EN 50155                                |                                   | Class PC2                    |  |  |
| Pollution Degree              |                                                      |                                   | PD2                          |  |  |
| IP Rating                     |                                                      |                                   | IP20                         |  |  |
| Design Lifetime               |                                                      |                                   | 20 years                     |  |  |
| MTDE                          | according to IFCC1700/LITE 000 010                   | T <sub>AMB</sub> = +25°C          | 1800 x 10 <sup>3</sup> hours |  |  |
| MTBF                          | according to IEC61709/ UTE C80-810                   | T <sub>AMB</sub> = +55°C          | 1100 x 10 <sup>3</sup> hours |  |  |
| Useful Life Class             | according to EN50155:2018                            | 3 (S1)                            | L4                           |  |  |

#### Notes:

Note3: The board is protected on both sides with a protective / transparent / fluorescent / coating. The coating is compliant with class 2, according to IPC-A-610G: 2017

## **Derating Graph**



| Parameter                     | Condition                                                      | Value                       |
|-------------------------------|----------------------------------------------------------------|-----------------------------|
| Low Temperature start-up test | Temperature: -40°C<br>Stabilization time 2h                    | EN 60068-2-1 (Ad)           |
| Dry heat test                 | Temperature: +70°C Continuos operational checks time 6h        | EN 60068-2-2 (Be) — Cycle A |
| Low temperature storage test  | Temperature: -40°C Low temperature exposition time 16h         | EN 60068-2-1 (Ab)           |
| Cyclic damp heat test         | Temperature: +70°C/+25°C<br>Number of cycles: 2<br>Time 2x 24h | EN 60068-2-30 (Db)          |



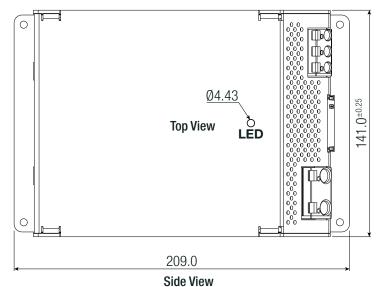
**Series** 

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

| ENVIRONMENTAL (RAILWAY STANDARDS)   |                                                                                                                                                                                                                                                                         |                                             |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|
| Parameter                           | Condition                                                                                                                                                                                                                                                               | Value                                       |  |  |  |
| Simulated long-life testing         | Random Vibration, unit not powered during test Frequency range 5-150Hz with -6db/oct from 20 to 150Hz Vertical axis 5.72m/s² for 5h [ASD 0.964(m/s²)²/Hz] Transverse axis 2.55m/s² for 5h [ASD 0.192(m/s²)²/Hz] Longitudinal axis 3.96m/s² for 5h [ASD 0.461(m/s²)²/Hz] | EN 61373 clause 9, class B<br>Body mounted  |  |  |  |
| Shock testing                       | Half-sine shock, unit powered during test Vertical axis 30m/s² for 30ms Transverse axis 30m/s² for 30ms Longitudinal axis 50m/s² for 50ms Number of shocks: 18 (3x polarity for each axis)                                                                              | EN 61373 clause 10, class B<br>Body mounted |  |  |  |
| Functional random vibration test    | Random Vibration, unit powered during test Frequency range 5-150Hz with -6db/oct from 20 to 150Hz Vertical axis 1.01m/s² for 10min [ASD 0.0301(m/s²)²/Hz] Transverse axis 0.45m/s² 10min [ASD 0.006(m/s²)²/Hz] Longitudinal axis 0.7m/s² 10min [ASD 0.0144(m/s²)²/Hz]   | EN 61373 clause 8, class B<br>Body mounted  |  |  |  |
| Fire Protection on Railway Vehicles |                                                                                                                                                                                                                                                                         | EN45545-2 Hazard Level HL1 - HL3            |  |  |  |

| SAFETY AND CERTIFICATIONS (DESIGNED TO MEET)                                                                                                                |                                                                                          |                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Certificate Type (Safety)                                                                                                                                   | Report Number                                                                            | Standard                                                       |
| Audio/video, information and communication technology equipment. Safety requirements                                                                        | pending                                                                                  | IEC/EN62368-1                                                  |
| Railway applications - Insulation coordination - Part 1: Basic requirements - Clearances and creepage distances for all electrical and electronic equipment | pending                                                                                  | EN50124-1                                                      |
| Railway Applications - Electrical Equipment used on rolling stock                                                                                           | pending                                                                                  | EN50155                                                        |
| RoHS2                                                                                                                                                       |                                                                                          | RoHS 2011/65/EU                                                |
| EMC Compliance                                                                                                                                              | Condition                                                                                | Standard / Criterion                                           |
| Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement                                                    |                                                                                          | EN50121-3-2                                                    |
| Industrial, scientific and medical equipment - Radio frequency disturbance characteristics - Limits and methods of measurement                              |                                                                                          | EN55011                                                        |
| ESD Electrostatic discharge immunity test                                                                                                                   | Air: ±2, 4, 8kV<br>Contact: ±2, 4, 8kV                                                   | IEC61000-4-2:2009, Criteria A<br>EN61000-4-2:2008, Criteria A  |
| Radiated, radio-frequency, electromagnetic field immunity test                                                                                              | 20V/m (80-1000MHz)<br>10V/m (1000-2000MHz)<br>5V/m (2000-4000MHz)<br>3V/m (4000-6000MHz) | IEC/EN61000-4-3:2006,<br>Criteria A                            |
| Fast Transient and Burst Immunity                                                                                                                           | DC Power Port: ±2kV                                                                      | IEC/EN61000-4-4:2012,<br>Criteria A                            |
| Surge Immunity                                                                                                                                              | DC Power Port: ±0.5, 1kV line sym. DC Power Port: ±0.5, 1, 2kV lin unsym.                | IEC/EN61000-4-5:2014,<br>Criteria A                            |
| Immunity to conducted disturbances, induced by radio-frequency fields                                                                                       | 10Vr.m.s. (0.15-80MHz)                                                                   | IEC61000-4-6: 2016, Criteria A<br>EN61000-4-6:2016, Criteria A |
| Railway applications - Electromagnetic compatibility                                                                                                        |                                                                                          | EN50121-3-2:2016                                               |
| Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments                                           |                                                                                          | EN61000-6-4:2007+A1:2011                                       |

www.recom-power.com REV.: 0/2022 PD-6




## **Series**

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

| DIMENSION AND PHYSICAL CHARACTERISTICS |      |                        |
|----------------------------------------|------|------------------------|
| Parameter                              | Туре | Value                  |
| Material                               | case | aluminum               |
| Dimension (LxWxH)                      |      | 209.0 x 141.0 x 48.0mm |
| Weight                                 |      | 1.1kg typ.             |

## **Dimension Drawing (mm)**

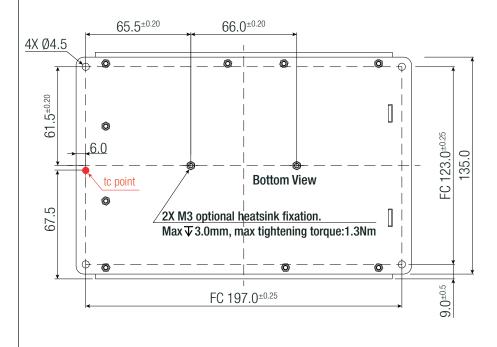


| Input Connector CAGE CLAMP® | CON1 |
|-----------------------------|------|
| (WAGO 745-353)              |      |

| # | Function | AWG   | Wire diameter         |
|---|----------|-------|-----------------------|
| 1 | -Vin     | 24-10 | 0.25-4mm <sup>2</sup> |
| 2 | +Vin     | 24-10 | 0.25-4mm <sup>2</sup> |
| 3 | PE       | 24-10 | 0.25-4mm <sup>2</sup> |

wire stripping length: 11-12mm Conductor connection direction to PCB 45°

# 12.0 185.0


## Output Connector CAGE CLAMP® CON2

(WAGO 745-602/006-000)

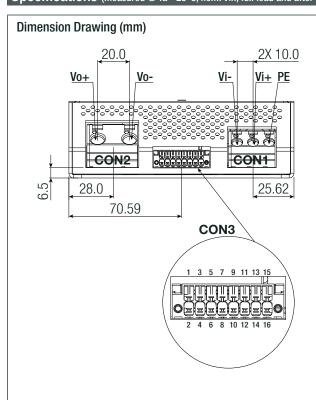
| # | Function | AWG  | Wire diameter          |
|---|----------|------|------------------------|
| 4 | +Vout    | 24-6 | 0.25-10mm <sup>2</sup> |
| 5 | -Vout    | 24-6 | 0.25-10mm <sup>2</sup> |

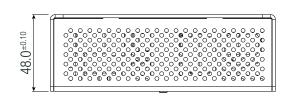
wire stripping length: 12-13mm

Conductor connection direction to PCB: 45°



| Tolerance Table |            |  |
|-----------------|------------|--|
| Dimension range | Tolerances |  |
| 0.5 - 6 mm      | ±0.1 mm    |  |
| 6 - 30 mm       | ±0.2 mm    |  |
| 30 - 120 mm     | ±0.3 mm    |  |
| 120 - 315 mm    | ±0.5 mm    |  |


FC = fixing centers

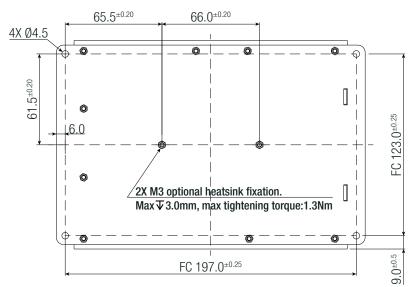

continued on next page



**Series** 

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)






| O!I OONO                        |             |    |                 |  |
|---------------------------------|-------------|----|-----------------|--|
|                                 | Signal CON3 |    |                 |  |
| (Phoenix DMC 1,5/ 8-G1F-3,5-LR) |             |    |                 |  |
| #                               | Function    | #  | <b>Function</b> |  |
| 16                              | INHO        | 15 | INH             |  |
| 14                              | NC          | 13 | NC              |  |
| 12                              | OK          | 11 | OK2             |  |
| 10                              | OK          | 9  | OK1             |  |
| 8                               | NC          | 7  | NC              |  |
| 6                               | CS1         | 5  | CS2             |  |
| 4                               | R           | 3  | R-              |  |
| 2                               | R           | 1  | R+              |  |

Signal CON3
Compatible Connector
Phoenix DFMC 1,5/ 8-STF-3,5 – 1790357

#### MOUNTING INSTRUCTION

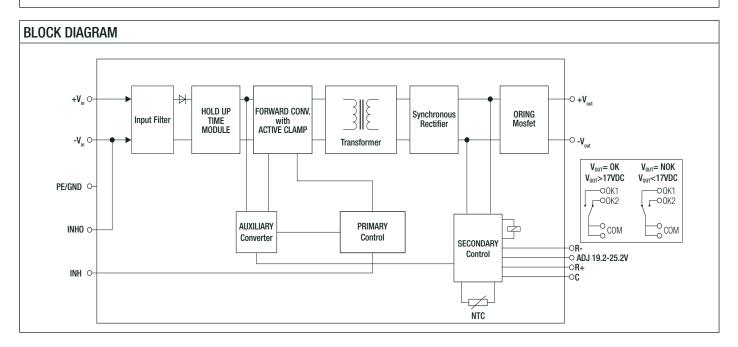
## **Mounting Dimensions**



For operation of the DC/DC converter the PE connection at the intended connection point as part of the overall EMC concept is mandatory.

Natural air convection around the unit must be possible at any time and the temperature at the indicated reference point shall not be exceeded.

The RMD converter has to be installed with 4 x M4 screws and can be mounted in any mounting direction.


All control and signal terminals have been tested and have passed the requirements according to the EN50121-3-2 regulations, nevertheless for installation conditions with cable lengths above 30m, maybe additional protection against disturbances will be necessary.



**Series** 

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

# 



| PACKAGING INFORMATION       |               |                        |
|-----------------------------|---------------|------------------------|
| Parameter                   | Туре          | Value                  |
| Packaging Dimension (LxWxH) | cardboard box | 145.0 x 53.0 x 218.0mm |
| Packaging Quantity          |               | 1pc                    |
| Storage Temperature Range   |               | -40°C to +95°C         |

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.