GateMate™ FPGA Suitable from university projects up to high volume applications Supported by: on the basis of a decision by the German Bundestag ## Overview The GateMate™ FPGA family of Cologne Chip™ AG addresses all application requirements of small to medium size FPGAs. Very low power and speed applications are feasible. Logic capacity, power consumption, package size and PCB compatibility are best in class. GateMate™ FPGAs combine these features with lowest cost in industry making the devices well suited from University projects to high volume applications. Because of the outstanding Circuit size/Cost ratio, even new applications now can use the benefits of FPGAs. All this is based on a novel FPGA architecture combining a special logic element called Cologne Programmable Element (CPE) with a smart routing engine. Furthermore, arbitrary size Multipliers are usable. Memory aware applications can use block RAMs with bit widths of 1 to 80 bits. Even bit-wise enable is possible. General Purpose IOs (GPIOs) can use different voltage levels from 1.2 to 2.5 Volt. GPIOs can be configured as single-ended or LVDS differential type. Furthermore a high speed SERDES interface is available. GateMate[™] FPGAs are supported by EasyConvert[™], that enables the transfer of existing FPGA designs without new synthesis. Worldclass P&R-software maps and implements the design into GateMate™ FPGA. A Static Timing Analysis (STA) is also performed and gives evidence about critical pathes and the overall performance of a design. The design can be easily simulated using Verilog netlist and SDF timing extraction. The devices are manufactured using Globalfoundries[™] 28 nm SLP (Super Low Power) process. Due to manufacturing in Europe, there is no danger of trade restrictions or high taxation. **Pricing starts** FBGA 320 ball 15x15 mm with 0.8 mm ball pitch package of GateMate™ CCGM1A1 ## designed and manufactured in Germany ## GateMate™ Features - Logic capacity from 40.000 to more than a million LUT-4 equivalent cells - Novel architecture with new programmable element (CPE) - CPE consists of LUT tree with 8 inputs - 3 operation areas: low power, economy, speed - Pricing starts from \$US 10 for GateMate[™] CCGM1A1 device in volume quantities - FPGA in ball grid package for low size and high pin count - Only 2 signal layers on PCB necessary - Low configuration bit count - Very fast configuration using 4 bit SPI interface up to 100 MHz - No excessive start-up currents - Only two supply voltages needed, that can be applied in any order - Multiple clocking schemas - Dual ported Block RAMs with 20-80 bit data width, also configurable as FIFO - Multipliers with arbitrary factor width implementable - SERDES 2.5 Gb/s - General Purpose IOs (GPIO) configurable as single-ended or differential - Pullup/Pulldown resistors configurable - Support for ADC and DAC with additional IP cores - Core voltage depending on application mode: 0.9 V, 1.0 V, 1.1 V - Low Power 28 nm SLP Globalfoundries[™] process technology - Made in Europe - EasyConvert[™] software to migrate existing designs to GateMate[™] - GateMate[™] Place&Route with automatic clock Skew analysis and fixing - Static Timing Analysis for performance evaluation - Available in different size versions (see table) | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | |---|--------------|----------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|---| | Α | GND | SER_
TX_N | SER_
TX_P | GND | IO_N1
_A2 | IO_N1
_A3 | VDD
_N1 | IO_N1
_A6 | IO_N1
_A8 | IO_N2
_A1 | IO_N2
_A3 | GND | IO_N2
_A5 | IO_N2
_A7 | IO_E2
_B8 | IO_E2
_B7 | IO_E2
A7 | GND | Α | | В | SER
RX_P | SER_
RTERM | VDD_
SER_PLL | IO_N1
_B0 | IO_N1
_B2 | IO_N1
_B3 | GND | IO_N1
_B6 | IO_N1
_B8 | IO_N2
_B1 | IO_N2
_B3 | VDD
_N2 | IO_N2
_B5 | IO_N2
_B7 | IO_E2
_A8 | GND | VDD
_E2 | IO_E2
B6 | В | | С | SER
RX_N | VDD_
SER | POR_
ADJ | IO_N1
_A0 | IO_N1
_B1 | VDD
_N1 | IO_N1
_B4 | IO_N1
_B5 | IO_N1
_B7 | IO_N2
_B0 | IO_N2
_B2 | GND | IO_N2
_B4 | IO_N2
_B6 | IO_N2
_B8 | IO_E2
_A5 | IO_E2
_B5 | IO_E2
_A6 | С | | D | GND | CLK | TST | RST_N | IO_N1
_A1 | GND | IO_N1
_A4 | IO_N1
_A5 | IO_N1
_A7 | IO_N2
_A0 | IO_N2
_A2 | VDD
_N2 | IO_N2
_A4 | IO_N2
_A6 | IO_N2
_A8 | GND | IO_E2
_B4 | IO_E2
_A4 | D | | Е | CLK_B | GND | GND | VDD
CLK | VDD
PLL | GND | VDD
_N1 | GND | VDD
_N1 | GND | VDD
_N2 | GND | GND | VDD
_N2 | GND | VDD
_E2 | GND | VDD
_E2 | Ε | | F | IO_W2
_B7 | IO_W2
_A7 | IO_W2
_A8 | IO_W2
_B8 | GND | | GND | VDD
_N1 | GND | VDD | GND | VDD
_N2 | | GND | IO_E2
_A2 | IO_E2
_B2 | IO_E2
_B3 | IO_E2
_A3 | F | | G | IO_W2
_B5 | IO_W2
_A5 | IO_W2
_A6 | IO_W2
_B6 | VDD
_W2 | GND | VDD | GND | VDD | GND | VDD | GND | VDD
_E2 | VDD
_E2 | IO_E2
_A0 | IO_E2
_B0 | IO_E2
_B1 | IO_E2
_A1 | G | | н | GND | VDD
_W2 | GND | VDD
_W2 | GND | VDD
_W2 | GND | VDD | GND | VDD | GND | VDD | GND | GND | IO_E1
_A7 | IO_E1 | IO_E1
_B8 | IO_E1
_A8 | н | | J | IO_W2
B3 | IO_W2 | IO_W2
A4 | IO_W2
_B4 | VDD
W2 | GND | VDD | GND | VDD | GND | VDD | GND | VDD | VDD
_E1 | IO_E1 | IO_E1 | IO_E1 | IO_E1 | J | | K | IO_W2
_B1 | IO_W2
_A1 | IO_W2 | | GND | VDD | GND | VDD | GND | VDD | GND | VDD | GND | GND | VDD
E1 | GND | VDD
E1 | GND | K | | L | IO_W2
B0 | IO_W2
A0 | IO_W1
A8 | | VDD
W1 | GND | VDD | GND | VDD | GND | VDD | GND | VDD
_E1 | GND | IO_E1
_A3 | IO_E1
B3 | IO_E1
B4 | IO_E1
_A4 | L | | М | IO_W1
_B7 | IO_W1
_A7 | IO_W1
_A6 | IO_W1
B6 | VDD
W1 | VDD
_W1 | GND | VDD | GND | VDD | GND | VDD | VDD
_S2 | VDD
_E1 | _ | IO_E1 | IO_E1
_B2 | IO_E1
_A2 | М | | N | IO_W1
B5 | IO_W1 | IO_W1 | IO_W1
B4 | GND | | VDD
_S3 | GND | VDD | GND | VDD
_S1 | GND | | VDD
_S2 | | IO_E1 | IO_S2
B8 | IO_S2 | N | | Р | GND | VDD
W1 | GND | VDD
_W1 | IO_W1
B3 | GND | GND | VDD
_S3 | GND | VDD
S1 | GND | VDD
_S1 | VDD
_S2 | GND | IO_S2
_A6 | IO_S2
B6 | IO_S2
_B7 | IO_S2
_A7 | Р | | R | IO_W1
B2 | IO_W1
A2 | IO_W1
B1 | | IO_W1
A3 | VDD
S3 | JTAG
TCK | SPI_
D1 | IO_S1
_A0 | IO_S1
_A2 | VDD
S1 | IO_S1
A4 | IO_S1
_A6 | IO_S2
_A0 | IO_S2
A2 | GND | VDD
S2 | GND | R | | т | IO_W1
B0 | IO_W1 | _ | CFG_
MD1 | JTAG_
TDI | GND | SPI_
FWD | SPI_
D0 | IO_S1
_B0 | | GND | _ | IO_S1
_B6 | IO_S2
_B0 | IO_S2
B2 | IO_S2
A4 | IO_S2
B4 | IO_S2
B5 | т | | U | CFG_
MD2 | CFG_
MD3 | VDD
S3 | GND | JTAG
TMS | VDD
S3 | SPI
D2 | SPI_
CLK | IO_S1
_B1 | IO_S1
_B3 | VDD
_S1 | | IO_S1
B7 | IO_S1
_B8 | IO_S2
B1 | GND | VDD
_S2 | IO_S2
A5 | U | | V | GND | CFG
FAILED | CEG | POR_
EN | | GND | SPI_
D3 | SPI_
CS_N | _ | IO_S1
_A3 | GND | _ | IO_S1
_A7 | IO_S1
_A8 | IO_S2 | IO_S2 | IO_S2
_B3 | GND | ٧ | | | 1 | _ _N | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | Package Connections of **GateMate[™] CCGM1A1** with ball positions and signal names Pricing starts at USD 10 | Device | Rel. size | Cologne Programmable Elements 1) 2) | | | | Block RAM 3) | | SERDES | I/Os | | Package | | |----------|-----------|-------------------------------------|-----------------|------------|-------|--------------|-----|--------|--------------|--------------|---------|-----------| | | | CPEs | 8-Inp-LUT trees | FF/Latches | 20Kb | 40Kb | | | single-ended | differential | balls | size (mm) | | CCGM1A1 | 1 | 20,480 | 20,480 | 40,960 | 64 | 32 | 4 | 1 | 162 | 81 | 320BGA | 15x15 | | CCGM1A2 | 2 | 40,960 | 40,960 | 81,920 | 128 | 64 | 8 | 2 | 162 | 81 | 320BGA | 15x15 | | CCGM1A4 | 4 | 81,920 | 81,920 | 163,840 | 256 | 128 | 16 | 4 | 162 | 81 | 320BGA | 15x15 | | CCGM1A9 | 9 | 184,320 | 184,320 | 368,640 | 576 | 288 | 36 | 9 | tbd | tbd | tbd | tbd | | CCGM1A16 | 16 | 327,680 | 327,680 | 655,360 | 1,024 | 512 | 64 | 16 | tbd | tbd | tbd | tbd | | CCGM1A25 | 25 | 512,000 | 512,000 | 1,024,000 | 1,600 | 800 | 100 | 25 | tbd | tbd | tbd | tbd | 1) CPEs have 2x4 or 8 inputs connected to a LUT tree $\,$ 2) Each CPE can be used as 2x2 Multiplier tile 3) Block RAM can have a max data width of 20 either 40 Bits Cologne Chip AG Eintrachtstr. 113 50668 Koeln, Germany eMail: info@colognechip.com Web: www.colognechip.com Tel: +49.221.91240