

The Future of Analog IC Technology

DESCRIPTION

The MP1472 is a monolithic synchronous buck regulator. The device integrates a $175m\Omega$ high-side MOSFET and a $115m\Omega$ low-side MOSFET that provide 2A of continuous load current over a wide input voltage of 4.75V to 18V. Current mode control provides fast transient response and cycle-by-cycle current limit.

An adjustable soft-start prevents inrush current at turn-on, and in shutdown mode the supply current drops to 1µA.

This device, available in an 8-pin TSOT23-8 package, provides a very compact solution with minimal external components.

EVALUATION BOARD REFERENCE

Board Number	Dimensions
EV1472GJ-00A	2.5"X x 2.5"Y x 0.5"Z

FEATURES

- 2A Output Current
- Wide 4.75V to 18V Operating Input Range
- Integrated Power MOSFET Switches
- Output Adjustable from 0.923V to 15V
- Up to 95% Efficiency
- Programmable Soft-Start
- Stable with Low ESR Ceramic Output Capacitors
- Fixed 340kHz Frequency
- Cycle-by-Cycle Over Current Protection
- Input Under Voltage Lockout
- 8–Pin TSOT23-8

APPLICATIONS

- Distributed Power Systems
- Networking Systems
- FPGA, DSP, ASIC Power Supplies
- Green Electronics/ Appliances
- Notebook Computers

For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved.

ORDERING INFORMATION

Part Number	Package	Top Marking
MP1472GJ*	TSOT23-8	ACW

*For Tape & Reel, add suffix –Z (e.g. MP1472GJ–Z);

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage V _{IN}	0.3V to +20V
Switch Node Voltage V _{SW}	21V
Boost Voltage V _{BS} V _{SW} –	0.3V to V _{SW} + 6V
All Other Pins	0.3V to +6V
Junction Temperature	150°C
Continuous Power Dissipation	(T _A = +25°C)
	1.25\//

Lead Temperature	260°C
Storage Temperature	65°C to +150°C

Recommended Operating Conditions ⁽³⁾

Input Voltage V _{IN}	
Output Voltage Vout	0.923V to 15V
Maximum Junction Temp. (1	「」)+125°C

Thermal Resistance $^{(4)}$ θ_{JA} θ_{JC}

```
TSOT23-8..... 100..... 55... °C/W
```

Notes:

- 2) The maximum allowable power dissipation is a function of the maximum junction temperature $T_J(MAX)$, the junction-toambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_D(MAX)=(T_J(MAX)-T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7 4-layer PCB.

¹⁾ Exceeding these ratings may damage the device.