

MP2480 5V—36V Input, 3A High **Power LED Driver**

The Future of Analog IC Technology

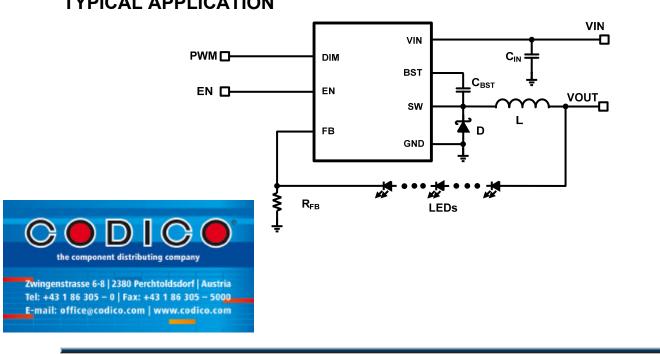
MPS CONFIDENTIAL AND PROPRIETARY INFORMATION- CODIO USE ONLY

DESCRIPTION

The MP2480 is step-down switching regulator that delivers a constant current of up to 3A to high-power LEDs. It integrates a high-side. high-voltage power MOSFET with a current limit of 4.3A. The wide 5V to 36V input range accommodates а varietv of step-down applications, making it ideal for general lighting and LCD backlighting applications. Hysteretic current-mode control helps provide for a very fast response, which makes the 20kHz dimming frequency possible. MPS's proprietary feedback control minimizes the number of external components while delivering an LED current with a typical accuracy of ±3%.

The switching frequency goes up to 2MHz, thus permitting smaller components. Thermal shut down, and short circuit protection provide reliable fault-tolerant operation. A 160µA guiescent current allows for use in batterypowered applications.

The MP2480 is available in SOIC8-EP with an exposed pad on the bottom.


FEATURES

- Wide 5V to 36V Operating Input Range •
- Up to 95% Efficiency •
- Hysteretic Control with No Compensation •
- No Output Capacitor Required •
- ±3% LED Current Accuracy •
- Up to 2MHz Switching Frequency
- Up to 20kHz Dimming Frequency
- 200mV Reference Voltage
- Short-Circuit Protection with Integrated **High-Side MOSFET**
- Thermal Shut Down
- Available in SOIC8-EP

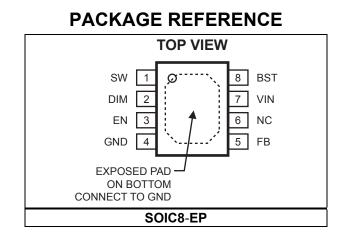
APPLICATIONS

- High Power LED Driver
- General Lighting and LCD Backlighting
- **Constant Current Source**

For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

MP2480 Rev. 1.0 7/25/2011


www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved.

MPS CONFIDENTIAL AND PROPRIETARY INFORMATION- CODIO USE ONLY ORDERING INFORMATION

Part Number	Package	Top Marking	Free Air Temperature (T _A)
MP2480DN*	SOIC8-EP	MP2480	-40°C to +85°C

* For Tape & Reel, add suffix –Z (e.g. MP2480DN–Z); For RoHS compliant packaging, add suffix –LF (e.g. MP2480DN–LF–Z)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage (V _{IN}) Switch Voltage (V _{SW})0.5V BST to SW	$V \text{ to } (V_{IN} + 0.5V)$
All Other Pins Junction Temperature	0.3V to +6V
Continuous Power Dissipation SOIC8-EP	$(T_A = 25^{\circ}C)^{(2)}$
Lead Temperature	260°C

Recommended Operating Conditions ⁽³⁾

Supply Voltage V _{IN}	5V to 36V
EN and DIM Voltages	0V to 5V
Maximum Junction Temp. (T _J).	125°C

Thermal Resistance ⁽⁴⁾ θ_{JA} θ_{JC}

SOIC8-EP50 10 ... °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7 4-layer board.