

MP28258

High Efficiency, Fast Transient, 3A, 4.2V-20V Input Synchronous Step-down Converter in QFN12 (2x3mm)

DESCRIPTION

The MP28258 is a fully-integrated, highefficiency, synchronous, step-down, switch mode converter. It offers a very compact solution that can achieve a 3A continuous output current over a wide input supply range with excellent load and line regulation, and can operate at high efficiency over a wide outputcurrent load range.

Constant-On-Time (COT) control mode provides fast transient response and eases loop stabilization.

Full protection features include SCP, OCP, OVP, UVP and, thermal shut down.

The MP28258 requires a minimal number of readily-available standard external components.

This device is available in a space saving 2mmx3mm 12-pin QFN package.

FEATURES

- Wide 4.2V to 20V Operating Input Range
- **3A Output Current** •
- Low R_{DS}(ON) Internal Power Mosfets •
- **Proprietary Switching Loss Reduction** Technique
- Power-Good Indicator in QFN Package
- Soft Startup/Shutdown •
- Programmable Switching Frequency
- SCP. OCP. UVP Protection and Thermal Shutdown
- **Optional OCP Protection: Latch-Off Mode** and Hiccup Mode.
- Output Adjustable From 0.815V To 13V
- Available in a QFN12 (2x3mm) Package •

APPLICATIONS

- **Networking Systems**
- **Distributed Power Systems**

For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

10/18/2011

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved.

ORDERING INFORMATION

Part Number	OCP Protection	Package	Top Marking	Free Air Temperature (T _A)
MP28258DD*	Latch-off mode	QFN12 (2x3mm)	AAA	-40°C to 85°C
MP28258DD-A	Hiccup mode	QFN12 (2x3mm)	ACF	-40°C to 85°C

* For Tape & Reel, add suffix -Z (e.g. MP28258DD-Z).

For RoHS Compliant Packaging, add suffix -LF (e.g. MP28258DD-LF-Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage V _{IN}	22V
V _{SW} 0.3V to ($V_{IN} + 0.3V$
V _{BST}	V _{SW} + 6V
I _{VIN (RMS)}	3.5A
All Other Pins0).3V to +6V
Continuous Power Dissipation (T _A	= 25°C) ⁽²⁾
QFN12 (2X3mm)	1.8W
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature65°C	to +150°C

Recommended Operating Conditions ⁽³⁾ Output Voltage V_{OUT}.....0.815V to 13V Maximum Junction Temp. (T_J)......125°C

Thermal Resistance (4) θ_{JA}

Notes:

1) Exceeding these ratings may damage the device.

The maximum allowable power dissipation is a function of the 2) maximum junction temperature T_J (MAX), the junction-toambient thermal resistance $\theta_{\text{JA}},$ and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_1) $(MAX)-T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.

 $\theta_{\rm JC}$

- The device is not guaranteed to function outside of its 3) operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

MP28259 High Efficiency, Fast Transient, 2A, 4.2V-20V Input Synchronous Step-down Converter in QFN12 (2x3mm)

DESCRIPTION

The MP28259 is a fully-integrated synchronous. rectified, step-down switch mode converter with programmable frequency. It offers a very compact solution that can achieve a 2A continuous output current over a wide input supply range with excellent load and line regulation, and can operate at high efficiency over a wide output current load range.

Constant-On-Time (COT) control mode provides fast transient response and eases loop stabilization.

Full protection features include SCP, OCP, OVP, UVP, and thermal shut down.

The MP28259 requires a minimal number of readily-available standard external components.

The device is available in a space saving 2mmx3mm 12-pin QFN package.

FEATURES

- Wide 4.2V to 20V Operating Input Range
- 2A Output Current
- Low R_{DS}(ON) Internal Power MOSFETs •
- **Proprietary Switching Loss Reduction** Technique
- Power-Good Indicator in QFN Package
- Soft Shutdown
- Programmable Switching Frequency
- OCP, SCP, OVP, UVP Protection and Thermal Shutdown
- Optional OCP Protection: Latch-Off Mode and Hiccup Mode
- Output Adjustable from 0.815V to 13V
- Available in a QFN12 (2mmx3mm) Package

APPLICATIONS

- **Networking Systems**
- **Distributed Power Systems**

For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved.

Part Number*	OCP Protection	Package	Top Marking	Free Air Temperature (T _A)
MP28259DD	Latch-off mode	QFN12 (2x3mm)	AAT	-40°C to 85°C
MP28259DD-A	Hiccup mode	QFN12 (2x3mm)	TBD	-40°C to 85°C

ORDERING INFORMATION

* For Tape & Reel, add suffix -Z (e.g. MP28259DD-Z).

For RoHS Compliant Packaging, add suffix -LF (e.g. MP28259DD-LF-Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage V _{IN}	
V _{SW}	0.3V to (V _{IN} + 0.3V)
V _{BST}	V _{SW} + 6V
All Other Pins	0.3V to +6V
Continuous Power Dissipatio	on $(T_A = 25^{\circ}C)^{(2)}$
QFN12 (2x3mm)	1.8W
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C

Recommended Operating Conditions ⁽³⁾

Supply Voltage V _{IN}	4.2V to 20V
Output Voltage Vout	0.815V to 13V
Maximum Junction Temp. (T _J)	125°C

Thermal Resistance (4) θ_{JA} θ_{JC}

QFN12 (2x3mm)......70...... 15... °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- The maximum allowable power dissipation is a function of the 2) maximum junction temperature T_J (MAX), the junction-toambient thermal resistance θ_{JA} and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J $(MAX)-T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its 3) operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.