

Introduction

This document highlights the differences between the KS8695 and the KS8695X. It is meant to aid the designer who is familiar with the KS8695, and would like to do a design using the KS8695X. The KS8695 was the industry's first System-on-a-Chip with an ARM9[™] processor and an embedded 5 port managed switch. The popularity of the KS8695 in the SOHO market to address wireline router and gateway applications has led to the development of the KS8695X, which is more optimized as a specialty part for this application.

External MAC Interface

The main functional difference between the KS8695 and the KS8695X, is the absence of the External MAC (EMAC) MII interface on the KS8695X. This difference is illustrated in the block diagrams below. In most wireline router applications the External MAC interface is not used, so the KS8695X is a more optimized solution.

Figure 1 KS8695 vs KS8695X Block Diagrams

The pins that supported the EMAC interface are now considered test pins and do not need to be connected for operation. The table below shows the pins that have changed in the KS8695X.

Pin Number	Signal on KS8695	Signal on KS8695X
84	MPMSEL	TEST3
130	MTXC	TEST4
131	MTXD[3]	TEST5
132	MTXD[2]	TEST6
133	MTXD[1]	TEST7
134	MTXD[0]	TEST8
135	MTXEN	TEST9
136	MTXER	TEST10
139	MCRS	TEST11
140	MCOL	TEST12
141	MRXC	TEST13
142	MRXD[3]	TEST14
143	MRXD[2]	TEST15
144	MRXD[1]	TEST16
145	MRXD[0]	TEST17
146	MRXDV	TEST18
147	MRXER	TEST19

Table 1 EMAC Pin Changes for KS8695X

Since the EMAC interface has been removed in the KS8695X, the corresponding registers have also been removed as shown in the table below.

	KS8695	KS8695X		
Registers	Register Offset	Register Offset	Notes	
Interrupt Controller Registers				
		0xE200	Reserve EMAC related Bit's	
Interrupt Mode Control Register	0xE200	(Reserve Bit 23:18)		
		0xE204	Reserve EMAC related Bit's	
Interrupt Enable Register	0xE204	(Reserve Bit 23:18)		
		0xE208	Reserve EMAC related Bit's	
Interrupt Status Register	0xE208	(Reserve Bit 23:18)		
Interrupt Priority Register for EMAC	0xE210	Removed		
		0xE22C	Reserve EMAC related Bit's	
Interrupt Mask Status Register	0xE22C	(Reserve Bit 23:18)		
Interrupt Pending Highest Priority		0xE230	Reserve EMAC related Bit's	
Register for FIQ	0xE230	(Reserve Bit 23:18)		
Interrupt Pending Highest Priority		0xE234	Reserve EMAC related Bit's	
Register for IRQ	0xE234	(Reserve Bit 23:18)		
Switch Engine Registers				
			Default values changed	
		0xE800	For KS8695X	
		(Change default values for	Bit $27:25 = 0x0$	
Switch Engine Control 0 Register	0xE800	Bit 27:22)	Bit $24:22 = 0x6$	
EMAC DMA Registers				
EMAC DMA Transmit Control	0xA000	Removed		
EMAC DMA Receive Control	0xA004	Removed		

Micrel Incorporated copyright 2004

EMAC DMA Transmit Start			
Command	0xA008	Removed	
EMAC DMA Receive Start Command	0xA00C	Removed	
EMAC Transmit Descriptor List Base	0 4 0 1 0	D	
Address EMAC Receive Descriptor List Base	0XA010	Removed	
Address	0xA014	Removed	
EMAC Station Address Low Register	0xA018	Removed	
EMAC Station Address High Register	0xA01C	Removed	
ADD MAC Low 0	0xA080	Removed	
ADD MAC High 0	0xA084	Removed	
ADD MAC Low 1	0xA088	Removed	
ADD MAC High 1	0xA08C	Removed	
ADD MAC Low 2	0xA090	Removed	
ADD MAC High 2	0xA094	Removed	
ADD MAC Low 3	0xA098	Removed	
ADD MAC High 3	0xA09C	Removed	
ADD MAC Low 4	0xA0A0	Removed	
ADD MAC High 4	0xA0A4	Removed	
ADD MAC Low 5	0xA0A8	Removed	
ADD MAC High 5	0xA0AC	Removed	
ADD MAC Low 6	0xA0B0	Removed	
ADD MAC High 6	0xA0B4	Removed	
ADD MAC Low 7	0xA0B8	Removed	
ADD MAC High 7	0xA0BC	Removed	
ADD MAC Low 8	0xA0C0	Removed	
ADD MAC High 8	0xA0C4	Removed	
ADD MAC Low 9	0xA0C8	Removed	
ADD MAC High 9	0xA0CC	Removed	
ADD MAC Low 10	0xA0D0	Removed	
ADD MAC High 10	0xA0D4	Removed	
ADD MAC Low 11	0xA0D8	Removed	
ADD MAC High 11	0xA0DC	Removed	
ADD MAC Low 12	0xA0E0	Removed	
ADD MAC High 12	0xA0E4	Removed	
ADD MAC Low 13	0xA0E8	Removed	
ADD MAC High 13	0xA0EC	Removed	
ADD MAC Low 14	0xA0F0	Removed	
ADD MAC High 14	0xA0F4	Removed	
ADD MAC Low 15	0xA0F8	Removed	
ADD MAC High 15	0xA0FC	Removed	
EMAC Misc. Control Register	0xEA08	Removed	
WAN Misc. Control Register	0xEA0C	0xEA0C	Default values changed
		(Change default values for	For KS8695X
		Bit 2:0)	Bit $2:0 = 0x6$

Porting Micrel KS8695 Linux Software to the KS8695X

The absence of the external MAC interface in the KS8695X affects initialization and Ethernet driver code in Micrel's Linux software. We have upgraded the software in our KS8695X evaluation kit CD ROM. Initialization code changes can be found by searching file .\loader\diag\diag.c for "KS8695X". In this file the external MAC interface is referred to as EMAC. Ethernet driver code changes can be found by searching file .\linux\drivers\net\ks8695\ks8695_fxbw.c and .\linux\drivers\net\ks8695\ks8695_main.c for "KS8695X". In these files, the external MAC interface is referred to as HPNA.

KS8695X initialization and Ethernet driver code must not access the following external MAC interface related registers and register fields:

REG_EMAC_DMA_TX	000Ax0
REG_EMAC_DMA_RX	0xA004
REG_EMAC_DMA_TX_START	800Ax0
REG_EMAC_DMA_RX_START	0xA00C
REG_EMAC_TX_LIST	0xA010
REG_EMAC_RX_LIST	0xA014
REG_EMAC_MAC_LOW	0xA018
REG_EMAC_MAC_HIGH	0xA01C
REG_EMAC_BIST	0xA07C
REG_EMAC_MAC_ELOW	0xA080
REG_EMAC_MAC_EHIGH	0xA084
REG_INT_EMAC_PRIORITY	0xE210
KS8695_INT_ENABLE	<pre>0xE204 (register fields defined below)</pre>
INT_HPNA_TX	0x0080000
INT_HPNA_RX	0x00400000
INT_HPNA_TX_UNAVIAL	0x00200000
INT_HPNA_RX_UNAVIAL	0x00100000
INT_HPNA_TX_STOPPED	0x00080000
INT_HPNA_RX_STOPPED	0x00040000
REG_MISC_CONTROL	0xEA08 (register fields defined below)
FULL_DUPLEX	0x0000001
SPEED_100	0x0000002

PHY And Voltages

In addition to removing the external MAC interface in the KS8695X, we have also improved the Physical layer transceivers and decreased the amount of voltages required. For the PHY, our engineers have improved the clock and data recovery circuits to make them more robust in receiving ill conditioned ethernet signals. This means the the end product will be able to operate in less favorable conditions in the field, whether it be old ethernet wiring, or a link partner that transmits a signal outside of IEEE specifications.

We have also reduced the voltage supply requirements in the KS8695X. We found a way to allow current KS8695 customers to keep their board designs and reduce the cost of LDO's on the board. In order to do this we have designed our KS8695X to be able to accept either 3.3V or 2.5V on the VDDAT pins. The table below shows the details of the KS8695 versus the KS8695X voltage requirements.

Micrel Incorporated copyright 2004

DIN	Din Nama	KS8605 Voltage Dequinement	KS8605V Voltage Dequinement
PIN 152		1.8V analog VDD for DL	1 9V analog VDD for DL
152	VDDA-PLL	1.8V analog VDD lof PLL	1.8V analog VDD lof PLL
173	VDDAT	2.5 V analog VDD	2.5 v or 5.5 v analog vDD
154	VDDAR	1.8V analog VDD	1.8V analog VDD
157			
170			
186			
195			
25	VDD-CORE	2.0V digital core VDD	1.8V digital core VDD
43			
90 115			
113			
1	VDD-IO	3.3V digital I/O circuitry VDD	3.3V digital I/O circuitry VDD
11	122 10		
21			
34 47			
53			
63			
73			
79			
103			
26	VSS-CORE	Digital Core VSS	Digital Core VSS
44	ibb con		
91			
110			
2	VSS-IO	Digital I/O VSS	Digital I/O VSS
12	100 10	Digital 1/0 1/05	
22			
35			
40 54			
64			
74			
80			
104			
153	GNDA	Analog Ground	Analog Ground
155	ONDIT	Thung Ground	Thung Ground
156			
161 164			
167			
171			
176			
182			
185			
192			
194			
106			1

Table 3 KS8695 vs KS8695X Voltage Requirements

Conclusion

The KS8695X is the perfect solution for the wireline router/gateway application. The removal of the External MAC interface, improvement in the PHY, and a reduction in voltage supply requirements versus the KS8695 make the KS8695X easier to use, and a more optimized solution. Since the external MAC interface is not used in most wireline router/gateway applications, its removal decreases the amount of traces that need to be routed, making it easier to route economic 2 layer boards. Removing the external MAC interface also results in less register configuration at boot time, as well as a small power reduction in the chip. The PHY improvement allows the customer to feel more at ease that a KS8695X based product will perform under non-ideal conditions in the field. Legacy ethernet equipment and wiring in the field have aged, and may have signalling that has drifted out of IEEE specification over time. The new improvements. Finally, the reduction in voltage supply requirements has been done in such a way as to make the KS8695X nearly backwards compatible with the KS8695. This allows current KS8695 customers to use their existing boards with the KS8695X in new designs will only be required to provide 2 voltages. With these new features, KS8695X is truly the most optimized, and easy to design solution for wireline gateway applications.

MICREL INC. 486 Mercury Drive, Sunnyvale, CA 94085 USA TEL 1 (408) 735-1118 FAX 1 (408) 735-1119 WEB <u>HTTP://WWW.MICREL.COM</u>

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 2004 Micrel Incorporated