Features

- 80C51 Core Architecture
- 256 Bytes of On-chip RAM
- 2048 Bytes of On-chip ERAM
- 64K Bytes of On-chip Flash Memory
 - Data Retention: 10 Years at 85°C Read/Write Cycle: 10K
- 2K Bytes of On-chip Flash for Bootloader
- 2K Bytes of On-chip EEPROM Read/Write Cycle: 100K
- 14-sources 4-level Interrupts
- Three 16-bit Timers/Counters
- Full Duplex UART Compatible 80C51
- Maximum Crystal Frequency 40 MHz
 - In X2 Mode, 20 MHz (CPU Core, 40 MHz)
- Five Ports: 32 + 2 Digital I/O Lines
- Five-channel 16-bit PCA with:
 - PWM (8-bit)
 - High-speed Output
 - Timer and Edge Capture
- Double Data Pointer
- 21-bit WatchDog Timer (7 Programmable Bits)
- A 10-bit Resolution Analog to Digital Converter (ADC) with 8 Multiplexed Inputs
- Full CAN Controller:
 - Fully Compliant with CAN Rev2.0A and 2.0B
 - Optimized Structure for Communication Management (Via SFR)
 - 15 Independent Message Objects:
 - Each Message Object Programmable on Transmission or Reception
 - Individual Tag and Mask Filters up to 29-bit Identifier/Channel
 - 8-byte Cyclic Data Register (FIFO)/Message Object
 - 16-bit Status and Control Register/Message Object
 - 16-bit Time-Stamping Register/Message Object
 - CAN Specification 2.0 Part A or 2.0 Part B Programmable for Each Message Object
 - Access to Message Object Control and Data Registers Via SFR
 - Programmable Reception Buffer Length Up To 15 Message Objects
 - Priority Management of Reception of Hits on Several Message Objects at the
 - Same Time (Basic CAN Feature)
 - Priority Management for Transmission
 - Message Object Overrun Interrupt
 - Supports:
 - Time Triggered Communication
 - Autobaud and Listening Mode
 - Programmable Automatic Reply Mode
 - 1-Mbit/s Maximum Transfer Rate at 8 MHz⁽¹⁾ Crystal Frequency in X2 Mode
 - Readable Error Counters
 - Programmable Link to On-chip Timer for Time Stamping and Network Synchronization
 - Independent Baud Rate Prescaler
 - Data, Remote, Error and Overload Frame Handling
- On-chip Emulation Logic (Enhanced Hook System)
- Power Saving Modes:
 - Idle Mode
 - Power-down Mode

1. At BRP = 1 sampling point will be fixed.

Enhanced 8-bit MCU with CAN Controller and Flash Memory

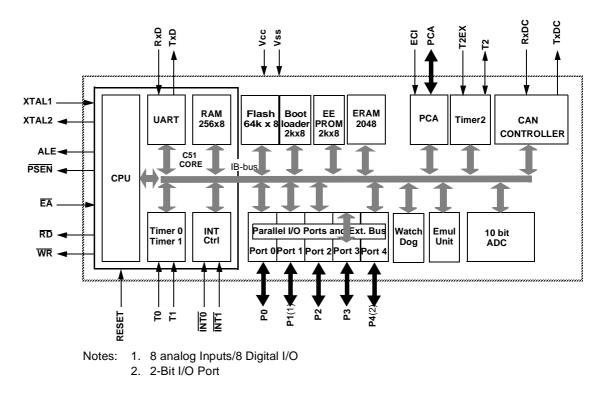
AT89C51CC03

Advance Information

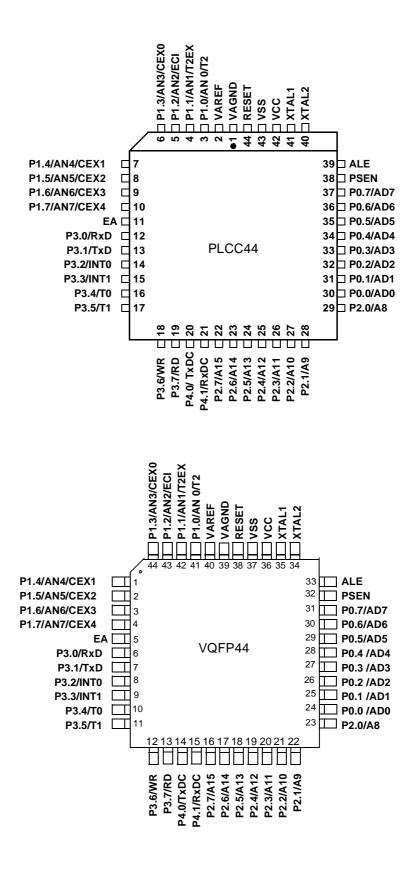
Rev. 4182 Draft_A-8051-08/02

- Power Supply: 3 volts to 5.5 volts
- Temperature Range: Industrial (-40° to +85°C)
- Packages: VQFP44, PLCC44, CA-BGA64

Description

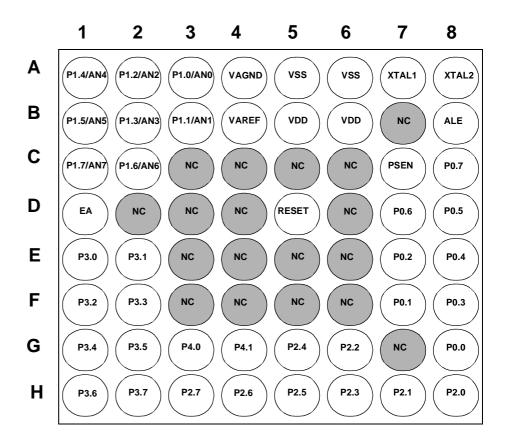

The AT89C51CC03 is the third member of the CANary[™] family of 8-bit microcontrollers dedicated to CAN network applications.

In X2 mode a maximum external clock rate of 20 MHz reaches a 300 ns cycle time.


Besides the full CAN controller AT89C51CC03 provides 64K Bytes of Flash memory including In-System Programming (ISP), 2K Bytes Boot Flash Memory, 2K Bytes EEPROM and 2048 byte ERAM.

Primary attention is paid to the reduction of the electro-magnetic emission of AT89C51CC03.

Block Diagram


Pin Configuration

CA-BGA64 Top View

Table 1. Pin Description

Pin Name	Туре	Description
VSS	GND	Circuit ground
VCC		Supply Voltage
VAREF		Reference Voltage for ADC
VAGND		Reference Ground for ADC
P0.0:7	I/O	Port 0: Is an 8-bit open drain bi-directional I/O port. Port 0 pins that have 1's written to them float, and in this state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pull-ups when emitting 1's. Port 0 also outputs the code Bytes during program validation. External pull-ups are required during program verification.
P1.0:7	I/O	Port 1: Is an 8-bit bi-directional I/O port with internal pull-ups. Port 1 pins can be used for digital input/output or as analog inputs for the Analog Digital Converter (ADC). Port 1 pins that have 1's written to them are pulled high by the internal pull-up transistors and can be used as inputs in this state. As inputs, Port 1 pins that are being pulled low externally will be the source of current (I _L , see section "Electrical Characteristic") because of the internal pull-ups. Port 1 pins are assigned to be used as analog inputs via the ADCCF register (in this case the internal pull-ups are disconnected). As a secondary digital function, port 1 contains the Timer 2 external trigger and clock input; the PCA external clock input and the PCA module I/O. P1.0/AN0/T2 Analog input channel 0, External clock input for Timer/counter2. P1.1/AN1/T2EX Analog input channel 1, Trigger input for Timer/counter2. P1.2/AN2/ECI Analog input channel 2, PCA external clock input. P1.3/AN3/CEX0 Analog input channel 3, PCA module 0 Entry of input/PWM output. P1.4/AN4/CEX1 Analog input channel 4, PCA module 1 Entry of input/PWM output. P1.5/AN5/CEX2 Analog input channel 5, PCA module 1 Entry of input/PWM output. P1.5/AN5/CEX2 Analog input channel 5, PCA module 2 Entry of input/PWM output. P1.5/AN5/CEX2 Analog input channel 6, PCA module 2 Entry of input/PWM output. P1.5/AN5/CEX2 Analog input channel 6, PCA module 2 Entry of input/PWM output. P1.5/AN5/CEX2 Analog input channel 7, PCA module 3 Entry of input/PWM output. P1.7/AN7/CEX4 Analog input channel 7, PCA module 3 Entry of input/PWM output. P1.7/AN7/CEX4 Analog input channel 7, PCA module 4 Entry of input/PWM output. P1.7/AN7/CEX4 Analog input channel 7, PCA module 4 Entry of input/PWM output. P1.7/AN7/CEX4 CMS inputs without external pull-ups.
P2.0:7	I/O	Port 2: Is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins that have 1's written to them are pulled high by the internal pull-ups and can be used as inputs in this state. As inputs, Port 2 pins that are being pulled low externally will be a source of current (I _{IL} , see section "Electrical Characteristic") because of the internal pull-ups. Port 2 emits the high-order address byte during accesses to the external Program Memory and during accesses to external Data Memory that uses 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1's. During accesses to external Data Memory that use 8 bit addresses (MOVX @Ri), Port 2 transmits the contents of the P2 special function register. It also receives high-order addresses and control signals during program validation.

Table 1. Pin Description (Continued) Pin Name Type Description

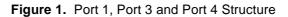
Pin Name	Туре	Description
P3.0:7	I/O	Port 3: Is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins that have 1's written to them are pulled high by the internal pull-up transistors and can be used as inputs in this state. As inputs, Port 3 pins that are being pulled low externally will be a source of current (I_{IL} , see section "Electrical Characteristic") because of the internal pull-ups. The output latch corresponding to a secondary function must be programmed to one for that function to operate (except for TxD and \overline{WR}). The secondary functions are assigned to the pins of port 3 as follows:
		P3.0/RxD: Receiver data input (asynchronous) or data input/output (synchronous) of the serial interface P3.1/TxD: Transmitter data output (asynchronous) or clock output (synchronous) of the serial interface
		P3.2/INT0: External interrupt 0 input/timer 0 gate control input P3.3/INT1: External interrupt 1 input/timer 1 gate control input P3.4/T0:
		P3.4/10: Timer 0 counter input P3.5/T1: Timer 1 counter input P3.6/WR: External Data Memory write strobe; latches the data byte from port 0 into the external data memory
		P3.7/RD: External Data Memory read strobe; Enables the external data memory. It can drive CMOS inputs without external pull-ups.
P4.0:1	I/O	Port 4: Is an 2-bit bi-directional I/O port with internal pull-ups. Port 4 pins that have 1's written to them are pulled high by the internal pull-ups and can be used as inputs in this state. As inputs, Port 4 pins that are being pulled low externally will be a source of current (IIL, on the datasheet) because of the internal pull-up transistor. The output latch corresponding to a secondary function RxDC must be programmed to one for that function to operate. The secondary functions are assigned to the two pins of port 4 as follows:
		P4.0/TxDC: Transmitter output of CAN controller P4.1/RxDC: Receiver input of CAN controller. It can drive CMOS inputs without external pull-ups.

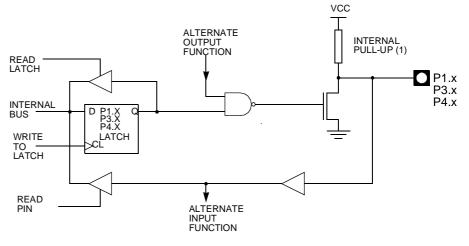
Pin Name	Туре	Description
RESET	I/O	Reset: A high level on this pin during two machine cycles while the oscillator is running resets the device. An internal pull-down resistor to VSS permits power-on reset using only an external capacitor to VCC.
ALE	ο	ALE: An Address Latch Enable output for latching the low byte of the address during accesses to the external memory. The ALE is activated every 1/6 oscillator periods (1/3 in X2 mode) except during an external data memory access. When instructions are executed from an internal Flash (EA = 1), ALE generation can be disabled by the software.
PSEN	0	PSEN: The Program Store Enable output is a control signal that enables the external program memory of the bus during external fetch operations. It is activated twice each machine cycle during fetches from the external program memory. However, when executing from of the external program memory two activations of PSEN are skipped during each access to the external Data memory. The PSEN is not activated for internal fetches.
EA	I	EA : When External Access is held at the high level, instructions are fetched from the internal Flash when the program counter is less then 8000H. When held at the low level,AT89C51CC03 fetches all instructions from the external program memory.
XTAL1	I	XTAL1: Input of the inverting oscillator amplifier and input of the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. To operate above a frequency of 16 MHz, a duty cycle of 50% should be maintained.
XTAL2	0	XTAL2: Output from the inverting oscillator amplifier.

I/O Configurations

Each Port SFR operates via type-D latches, as illustrated in Figure 1 for Ports 3 and 4. A CPU "write to latch" signal initiates transfer of internal bus data into the type-D latch. A CPU "read latch" signal transfers the latched Q output onto the internal bus. Similarly, a "read pin" signal transfers the logical level of the Port pin. Some Port data instructions activate the "read latch" signal while others activate the "read pin" signal. Latch instructions are referred to as Read-Modify-Write instructions. Each I/O line may be independently programmed as input or output.

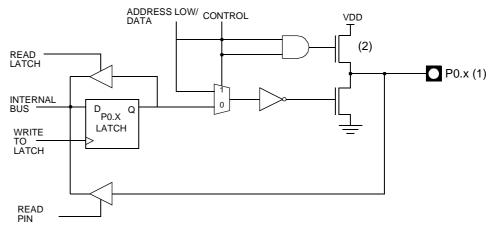
Port 1, Port 3 and Port 4


Figure 1 shows the structure of Ports 1 and 3, which have internal pull-ups. An external source can pull the pin low. Each Port pin can be configured either for general-purpose I/O or for its alternate input output function.

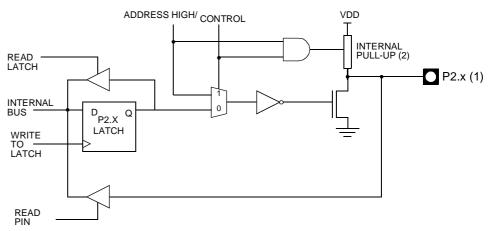

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x = 1,3 or 4). To use a pin for general-purpose input, set the bit in the Px register. This turns off the output FET drive.

To configure a pin for its alternate function, set the bit in the Px register. When the latch is set, the "alternate output function" signal controls the output level (see Figure 1). The operation of Ports 1, 3 and 4 is discussed further in the "quasi-Bidirectional Port Operation" section.





Port 0 and Port 2Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port
0, shown in Figure 3, differs from the other Ports in not having internal pull-ups. Figure 3
shows the structure of Port 2. An external source can pull a Port 2 pin low.


To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x = 0 or 2). To use a pin for general-purpose input, set the bit in the Px register to turn off the output driver FET.

- Notes: 1. Port 0 is precluded from use as general-purpose I/O Ports when used as address/data bus drivers.
 - Port 0 internal strong pull-ups assist the logic-one output for memory bus cycles only. Except for these bus cycles, the pull-up FET is off, Port 0 outputs are open-drain.

Figure 3. Port 2 Structure

- Notes: 1. Port 2 is precluded from use as general-purpose I/O Ports when as address/data bus drivers.
 - 2. Port 2 internal strong pull-ups FET (P1 in FiGURE) assist the logic-one output for memory bus cycle.

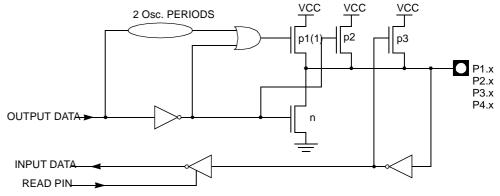
When Port 0 and Port 2 are used for an external memory cycle, an internal control signal switches the output-driver input from the latch output to the internal address/data line.

Read-Modify-Write Instructions

Some instructions read the latch data rather than the pin data. The latch based instructions read the data, modify the data and then rewrite the latch. These are called "Read-Modify-Write" instructions. Below is a complete list of these special instructions (see Table). When the destination operand is a Port or a Port bit, these instructions read the latch rather than the pin:

 Table 2.
 Read-Modify-Write Instructions

Instruction	Description	Example
ANL	logical AND	ANL P1, A
ORL	logical OR	ORL P2, A
XRL	logical EX-OR	XRL P3, A
JBC	jump if bit = 1 and clear bit	JBC P1.1, LABEL
CPL	complement bit	CPL P3.0
INC	increment	INC P2
DEC	decrement	DEC P2
DJNZ	decrement and jump if not zero	DJNZ P3, LABEL
MOV Px.y, C	move carry bit to bit y of Port x	MOV P1.5, C
CLR Px.y	clear bit y of Port x	CLR P2.4
SET Px.y	set bit y of Port x	SET P3.3


It is not obvious the last three instructions in this list are Read-Modify-Write instructions. These instructions read the port (all 8 bits), modify the specifically addressed bit and write the new byte back to the latch. These Read-Modify-Write instructions are directed to the latch rather than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at the pin. For example, a Port bit used to drive the base of an external bipolar transistor can not rise above the transistor's base-emitter junction voltage (a value lower than VIL). With a logic one written to the bit, attempts by the CPU to read the Port at the pin are misinterpreted as logic zero. A read of the latch rather than the pins returns the correct logic-one value.

Quasi-Bidirectional Port Operation Port 1, Port 2, Port 3 and Port 4 have fixed internal pull-ups and are referred to as "quasi-bidirectional" Ports. When configured as an input, the pin impedance appears as logic one and sources current in response to an external logic zero condition. Port 0 is a "true bidirectional" pin. The pins float when configured as input. Resets write logic one to all Port latches. If logical zero is subsequently written to a Port latch, it can be returned to input conditions by a logical one written to the latch.

Note: Port latch values change near the end of Read-Modify-Write instruction cycles. Output buffers (and therefore the pin state) update early in the instruction after Read-Modify-Write instruction cycle.

Logical zero-to-one transitions in Port 1, Port 2, Port 3 and Port 4 use an additional pullup (p1) to aid this logic transition (see Figure 4.). This increases switch speed. This extra pull-up sources 100 times normal internal circuit current during 2 oscillator clock periods. The internal pull-ups are field-effect transistors rather than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on when the gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on for two oscillator periods immediately after a zero-to-one transition in the Port latch. A logical one at the Port pin turns on pFET #3 (a weak pull-up) through the inverter. This inverter and pFET pair form a latch to drive logical one. pFET #2 is a very weak pull-up switched on whenever the associated nFET is switched off. This is traditional CMOS switch convention. Current strengths are 1/10 that of pFET #3.

Note: Port 2 p1 assists the logic-one output for memory bus cycles.

SFR Mapping

The Special Function Registers (SFRs) of the AT89C51CC03 fall into the following categories:

Table 3. C51 Core SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ACC	E0h	Accumulator	_	_	_	_	_	-	-	-
В	F0h	B Register	_	_	_	_	_	-	-	-
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81h	Stack Pointer	_	_	_	_	_	-	-	-
DPL	82h	Data Pointer Low byte LSB of DPTR	_	_	_	_	_	_	_	-
DPH	83h	Data Pointer High byte MSB of DPTR	_	_	_	_	_	_	_	-

Table 4. I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
P0	80h	Port 0	-	-	-	-	-	-	-	-
P1	90h	Port 1	-	-	-	-	-	-	-	-
P2	A0h	Port 2	-	-	-	-	-	-	-	-
P3	B0h	Port 3	-	-	-	-	-	-	-	-
P4	C0h	Port 4 (x2)	-	-	-	-	-	-	-	-

Table 5. Timers SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ТНО	8Ch	Timer/Counter 0 High byte	_	_	-	_	_	-	_	_
TL0	8Ah	Timer/Counter 0 Low byte	_	_	-	_	_	-	_	_
TH1	8Dh	Timer/Counter 1 High byte	_	_	-	_	_	-	_	_
TL1	8Bh	Timer/Counter 1 Low byte	_	_	-	_	_	-	_	_
TH2	CDh	Timer/Counter 2 High byte	_	_	-	_	-	-	_	_
TL2	CCh	Timer/Counter 2 Low byte	_	_	-	_	_	-	_	_
TCON	88h	Timer/Counter 0 and 1 control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	ITO
TMOD	89h	Timer/Counter 0 and 1 Modes	GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00

Table 5. Timers SFRs (Continued)

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
T2CON	C8h	Timer/Counter 2 control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#
T2MOD	C9h	Timer/Counter 2 Mode	_	_	_	_	_	_	T2OE	DCEN
RCAP2H	CBh	Timer/Counter 2 Reload/Capture High byte	_	_	_	_	_	_	_	_
RCAP2L	CAh	Timer/Counter 2 Reload/Capture Low byte	_	_	_	_	_	_	_	_
WDTRST	A6h	WatchDog Timer Reset	_	-	_	-	-	-	-	-
WDTPRG	A7h	WatchDog Timer Program	_	_	_	_	_	S2	S1	SO

Table 6. Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCON	98h	Serial Control	FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
SBUF	99h	Serial Data Buffer	-	_	-	-	_	-	-	-
SADEN	B9h	Slave Address Mask	-	-	-	-	-	-	-	-
SADDR	A9h	Slave Address	_	_	_	_	_	_	_	-

Table 7. PCA SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CCON	D8h	PCA Timer/Counter Control	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
CMOD	D9h	PCA Timer/Counter Mode	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF
CL	E9h	PCA Timer/Counter Low byte	_	_	_	_	_	_	_	-
СН	F9h	PCA Timer/Counter High byte	_	_	_	_	_	_	_	-
CCAPM0	DAh	PCA Timer/Counter Mode 0		ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0
CCAPM1	DBh	PCA Timer/Counter Mode 1		ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1
CCAPM2	DCh	PCA Timer/Counter Mode 2	-	ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2
CCAPM3	DDh	PCA Timer/Counter Mode 3		ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3
CCAPM4	DEh	PCA Timer/Counter Mode 4		ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4
CCAP0H	FAh	PCA Compare Capture Module 0 H	CCAP0H7	CCAP0H6	CCAP0H5	CCAP0H4	CCAP0H3	CCAP0H2	CCAP0H1	CCAP0H0
CCAP1H	FBh	PCA Compare Capture Module 1 H	CCAP1H7	CCAP1H6	CCAP1H5	CCAP1H4	CCAP1H3	CCAP1H2	CCAP1H1	CCAP1H0
CCAP2H	FCh	PCA Compare Capture Module 2 H	CCAP2H7	CCAP2H6	CCAP2H5	CCAP2H4	CCAP2H3	CCAP2H2	CCAP2H1	CCAP2H0
ССАРЗН	FDh	PCA Compare Capture Module 3 H	CCAP3H7	CCAP3H6	CCAP3H5	CCAP3H4	CCAP3H3	CCAP3H2	CCAP3H1	CCAP3H0
CCAP4H	FEh	PCA Compare Capture Module 4 H	CCAP4H7	CCAP4H6	CCAP4H5	CCAP4H4	CCAP4H3	CCAP4H2	CCAP4H1	CCAP4H0

AT89C51CC03

Table 7. PCA SFRs (Continued)

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CCAP0L	EAh	PCA Compare Capture Module 0 L	CCAP0L7	CCAP0L6	CCAP0L5	CCAP0L4	CCAP0L3	CCAP0L2	CCAP0L1	CCAP0L0
CCAP1L	EBh	PCA Compare Capture Module 1 L	CCAP1L7	CCAP1L6	CCAP1L5	CCAP1L4	CCAP1L3	CCAP1L2	CCAP1L1	CCAP1L0
CCAP2L	ECh	PCA Compare Capture Module 2 L	CCAP2L7	CCAP2L6	CCAP2L5	CCAP2L4	CCAP2L3	CCAP2L2	CCAP2L1	CCAP2L0
CCAP3L	EDh	PCA Compare Capture Module 3 L	CCAP3L7	CCAP3L6	CCAP3L5	CCAP3L4	CCAP3L3	CCAP3L2	CCAP3L1	CCAP3L0
CCAP4L	EEh	PCA Compare Capture Module 4 L	CCAP4L7	CCAP4L6	CCAP4L5	CCAP4L4	CCAP4L3	CCAP4L2	CCAP4L1	CCAP4L0

Table 8. Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
IEN0	A8h	Interrupt Enable Control 0	EA	EC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	E8h	Interrupt Enable Control 1	-	_	_	_	-	ETIM	EADC	ECAN
IPL0	B8h	Interrupt Priority Control Low 0	-	PPC	PT2	PS	PT1	PX1	PT0	PX0
IPH0	B7h	Interrupt Priority Control High 0	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
IPL1	F8h	Interrupt Priority Control Low 1	-	_	_	_	_	POVRL	PADCL	PCANL
IPH1	F7h	Interrupt Priority Control High1	_	_	_	_	_	POVRH	PADCH	PCANH

Table 9. ADC SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ADCON	F3h	ADC Control	_	PSIDLE	ADEN	ADEOC	ADSST	SCH2	SCH1	SCH0
ADCF	F6h	ADC Configuration	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
ADCLK	F2h	ADC Clock	-	-	_	PRS4	PRS3	PRS2	PRS1	PRS0
ADDH	F5h	ADC Data High byte	ADAT9	ADAT8	ADAT7	ADAT6	ADAT5	ADAT4	ADAT3	ADAT2
ADDL	F4h	ADC Data Low byte	_	_	_	_	_	_	ADAT1	ADAT0

Table 10. CAN SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CANGCON	ABh	CAN General Control	ABRQ	OVRQ	TTC	SYNCTTC	AUT– BAUD	TEST	ENA	GRES
CANGSTA	AAh	CAN General Status	_	OVFG	_	TBSY	RBSY	ENFG	BOFF	ERRP
CANGIT	9Bh	CAN General Interrupt	CANIT	_	OVRTIM	OVRBUF	SERG	CERG	FERG	AERG
CANBT1	B4h	CAN Bit Timing 1	-	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	-
CANBT2	B5h	CAN Bit Timing 2	-	SJW1	SJW0	-	PRS2	PRS1	PRS0	-
CANBT3	B6h	CAN Bit Timing 3	_	PHS22	PHS21	PHS20	PHS12	PHS11	PHS10	SMP

Table 10. CAN SFRs (Continued)

	CAN	SFRs (Continue	u)							
Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CANEN1	CEh	CAN Enable Channel byte 1	_	ENCH14	ENCH13	ENCH12	ENCH11	ENCH10	ENCH9	ENCH8
CANEN2	CFh	CAN Enable Channel byte 2	ENCH7	ENCH6	ENCH5	ENCH4	ENCH3	ENCH2	ENCH1	ENCH0
CANGIE	C1h	CAN General Interrupt Enable	-	_	ENRX	ENTX	ENERCH	ENBUF	ENERG	_
CANIE1	C2h	CAN Interrupt Enable Channel byte 1	_	IECH14	IECH13	IECH12	IECH11	IECH10	IECH9	IECH8
CANIE2	C3h	CAN Interrupt Enable Channel byte 2	IECH7	IECH6	IECH5	IECH4	IECH3	IECH2	IECH1	IECH0
CANSIT1	BAh	CAN Status Interrupt Channel byte1	_	SIT14	SIT13	SIT12	SIT11	SIT10	SIT9	SIT8
CANSIT2	BBh	CAN Status Interrupt Channel byte2	SIT7	SIT6	SIT5	SIT4	SIT3	SIT2	SIT1	SIT0
CANTCON	A1h	CAN Timer Control	TPRESC 7	TPRESC 6	TPRESC 5	TPRESC 4	TPRESC 3	TPRESC 2	TPRESC 1	TPRESC 0
CANTIMH	ADh	CAN Timer high	CANTIM 15	CANTIM 14	CANTIM 13	CANTIM 12	CANTIM 11	CANTIM 10	CANTIM 9	CANTIM 8
CANTIML	ACh	CAN Timer low	CANTIM 7	CANTIM 6	CANTIM 5	CANTIM 4	CANTIM 3	CANTIM 2	CANTIM 1	CANTIM 0
CANSTMH	AFh	CAN Timer Stamp high	TIMSTMP 15	TIMSTMP 14	TIMSTMP 13	TIMSTMP 12	TIMSTMP 11	TIMSTMP 10	TIMSTMP 9	TIMSTMP 8
CANSTML	AEh	CAN Timer Stamp low	TIMSTMP7	TIMSTMP 6	TIMSTMP 5	TIMSTMP 4	TIMSTMP 3	TIMSTMP 2	TIMSTMP 1	TIMSTMP 0
CANTTCH	A5h	CAN Timer TTC high	TIMTTC 15	TIMTTC 14	TIMTTC 13	TIMTTC 12	TIMTTC 11	TIMTTC 10	TIMTTC 9	TIMTTC 8
CANTTCL	A4h	CAN Timer TTC low	TIMTTC 7	TIMTTC 6	TIMTTC 5	TIMTTC 4	TIMTTC 3	TIMTTC 2	TIMTTC 1	TIMTTC 0
CANTEC	9Ch	CAN Transmit Error Counter	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
CANREC	9Dh	CAN Receive Error Counter	REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
CANPAGE	B1h	CAN Page	CHNB3	CHNB2	CHNB1	CHNB0	AINC	INDX2	INDX1	INDX0
CANSTCH	B2h	CAN Status Channel	DLCW	ТХОК	RXOK	BERR	SERR	CERR	FERR	AERR
CANCONH	B3h	CAN Control Channel	CONCH1	CONCH0	RPLV	IDE	DLC3	DLC2	DLC1	DLC0
CANMSG	A3h	CAN Message Data	MSG7	MSG6	MSG5	MSG4	MSG3	MSG2	MSG1	MSG0

Table 10. CAN SFRs (Continued)

Mnemonic	Add	SFRs (Continue)	7	6	5	4	3	2	1	0
		CAN Identifier Tag byte 1(Part A)	IDT10	IDT9	IDT8	IDT7	IDT6	IDT5	IDT4	IDT3
CANIDT1	BCh	CAN Identifier Tag byte 1(PartB)	IDT28	IDT27	IDT26	IDT25	IDT24	IDT23	IDT22	IDT21
		CAN Identifier Tag byte 2 (PartA)	IDT2	IDT1	IDT0	_	_	_	_	_
CANIDT2	BDh	CAN Identifier Tag byte 2 (PartB)	IDT20	IDT19	IDT18	IDT17	IDT16	IDT15	IDT14	IDT13
CANIDT3	BEh	CAN Identifier Tag byte 3(PartA)	_	_	_	_	_	_	_	_
CANDIS	DEII	CAN Identifier Tag byte 3(PartB)	IDT12	IDT11	IDT10	IDT9	IDT8	IDT7	IDT6	IDT5
CANIDT4	BFh	CAN Identifier Tag byte 4(PartA)	-	_	-	-	-	RTRTAG	-	RB0TAF
CAND 14	DEII	CAN Identifier Tag byte 4(PartB)	IDT4	IDT3	IDT2	IDT1	IDT0	KIKIAG	RB1TAG	RBUTAF
		CAN Identifier Mask byte 1(PartA)	IDMSK10	IDMSK9	IDMSK8	IDMSK7	IDMSK6	IDMSK5	IDMSK4	IDMSK3
CANIDM1	C4h	CAN Identifier Mask byte 1(PartB)	IDMSK28	IDMSK27	IDMSK26	IDMSK25	IDMSK24	IDMSK23	IDMSK22	IDMSK21
CANIDM2	C5h	CAN Identifier Mask byte 2(PartA)	IDMSK2	IDMSK1	IDMSK0	_	_	_	_	_
CANIDMZ	Con	CAN Identifier Mask byte 2(PartB)	IDMSK20	IDMSK19	IDMSK18	IDMSK17	IDMSK16	IDMSK15	IDMSK14	IDMSK13
		CAN Identifier Mask byte 3(PartA)	_	_	_	_	_	_	_	_
CANIDM3	C6h	CAN Identifier Mask byte 3(PartB)	IDMSK12	IDMSK11	IDMSK10	IDMSK9	IDMSK8	IDMSK7	IDMSK6	IDMSK5
CANIDM4	C7h	CAN Identifier Mask byte 4(PartA) CAN Identifier Mask byte 4(PartB)	– IDMSK4	– IDMSK3	- IDMSK2	- IDMSK1	– IDMSK0	RTRMSK	_	IDEMSK

Table 11. Other SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1	SMOD0	_	POF	GF1	GF0	PD	IDL
AUXR	8Eh	Auxiliary Register 0	-	-	MO	XRS2	XRS1	XRS0	EXTRAM	A0
AUXR1	A2h	Auxiliary Register 1	-	-	ENBOOT	-	GF3	0	-	DPS
CKCON	8Fh	Clock Control	CANX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2

Table 11. Other SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
FCON	D1h	Flash Control	FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY
EECON	D2h	EEPROM Contol	EEPL3	EEPL2	EEPL1	EEPL0	_	_	EEE	EEBUSY

Table 12. SFR Mapping

	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	IPL1 xxxx x000	CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000	CCAP2H 0000 0000	CCAP3H 0000 0000	CCAP4H 0000 0000		FFh
F0h	B 0000 0000		ADCLK xxx0 0000	ADCON x000 0000	ADDL 0000 0000	ADDH 0000 0000	ADCF 0000 0000	IPH1 xxxx x000	F7h
E8h	IEN1 xxxx x000	CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000	CCAP2L 0000 0000	CCAP3L 0000 0000	CCAP4L 0000 0000		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 0000 0000	CMOD 00xx x000	CCAPM0 x000 0000	CCAPM1 x000 0000	CCAPM2 x000 0000	CCAPM3 x000 0000	CCAPM4 x000 0000		DFh
D0h	PSW 0000 0000	FCON 0000 0000	EECON xxxx xx00						D7h
C8h	T2CON 0000 0000	T2MOD xxxx xx00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000	CANEN1 x000 0000	CANEN2 0000 0000	CFh
C0h	P4 xxxx xx11	CANGIE xx00 000x	CANIE1 x000 0000	CANIE2 0000 0000	CANIDM1 xxxx xxxx	CANIDM2 xxxx xxxx	CANIDM3 xxxx xxxx	CANIDM4 xxxx xxxx	C7h
B8h	IPL0 x000 0000	SADEN 0000 0000	CANSIT1 0000 0000	CANSIT2 0000 0000	CANIDT1 xxxx xxxx	CANIDT2 xxxx xxxx	CANIDT3 xxxx xxxx	CANIDT4 xxxx xxxx	BFh
B0h	P3 1111 1111	CANPAGE 0000 0000	CANSTCH xxxx xxxx	CANCONCH xxxx xxxx	CANBT1 xxxx xxxx	CANBT2 xxxx xxxx	CANBT3 xxxx xxxx	IPH0 x000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000	CANGSTA x0x0 0000	CANGCON 0000 0x00	CANTIML 0000 0000	CANTIMH 0000 0000	CANSTMPL 0000 0000	CANSTMPH 0000 0000	AFh
A0h	P2 1111 1111	CANTCON 0000 0000	AUXR1 xxxx 00x0	CANMSG xxxx xxxx	CANTTCL 0000 0000	CANTTCH 0000 0000	WDTRST 1111 1111	WDTPRG xxxx x000	A7h
98h	SCON 0000 0000	SBUF 0000 0000		CANGIT 0x00 0000	CANTEC 0000 0000	CANREC 0000 0000			9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR x001 0100	CKCON 0000 0000	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00x1 0000	87h
	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Reserved

Note: 1. These registers are bit-addressable.


Sixteen addresses in the SFR space are both byte-addressable and bit-addressable. The bit-addressable SFR's are those whose address ends in 0 and 8. The bit addresses, in this area, are 0x80 through to 0xFF.

Clock	 The AT89C51CC03 core needs only 6 clock periods per machine cycle. This feature, called"X2", provides the following advantages: Divides frequency crystals by 2 (cheaper crystals) while keeping the same CPU power. Saves power consumption while keeping the same CPU power (oscillator power saving). Saves power consumption by dividing dynamic operating frequency by 2 in operating and idle modes. Increases CPU power by 2 while keeping the same crystal frequency. In order to keep the original C51 compatibility, a divider-by-2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by the software.
	An extra feature is available to start after Reset in the X2 mode. This feature can be enabled by a bit X2B in the Hardware Security Byte. This bit is described in the section "In-System Programming".
Description	The X2 bit in the CKCON register (see Table 13) allows switching from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode).
	Setting this bit activates the X2 feature (X2 mode) for the CPU Clock only (see Figure 5.).
	The Timers 0, 1 and 2, Uart, PCA, WatchDog or CAN switch in X2 mode only if the cor- responding bit is cleared in the CKCON register.
	The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on the XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 5. shows the clock generation block diagram. The X2 bit is validated on the XTAL1+2 rising edge to avoid glitches when switching from the X2 to the STD mode. Figure 6 shows the mode switching waveforms.

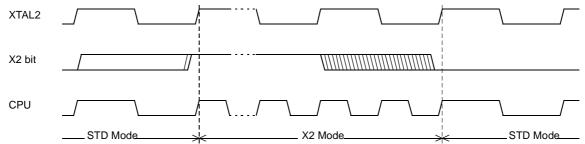


Figure 5. Clock CPU Generation Diagram

AT89C51CC03

Figure 6. Mode Switching Waveforms

Note: In order to prevent any incorrect operation while operating in the X2 mode, users must be aware that all peripherals using the clock frequency as a time reference (UART, timers...) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. A UART with a 4800 baud rate will have a 9600 baud rate.

Register

Table 13. CKCON Register

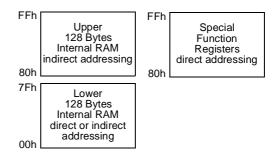
CKCON (S:8Fh) Clock Control Register

7	6	5	4	3	2	1	0
CANX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2
Bit Number	Bit Mnemonic	Description					
7	CANX2		ct 6 clock per	iods per peripl ods per periph			
6	WDX2		ct 6 clock per	iods per peripl ods per periph			
5	PCAX2	Clear to sele	ct 6 clock per	Array clock ⁽¹ iods per peripl ods per periph	heral clock cy		
4	SIX2	Clear to sele	ct 6 clock per	MODE 0 and 2 iods per peripl ods per periph	heral clock cy		
3	T2X2		ct 6 clock per	iods per peripl ods per periph	,		
2	T1X2		ct 6 clock per	iods per peripl ods per periph			
1	T0X2		ct 6 clock per	iods per peripl ods per periph			
0	X2	the periphera Set to select	als.	ds per machin		TD mode) for (ode) and to er	
Note: 1.	This contro	l bit is valida	ted when th	e CPU clock	bit X2 is se	t; when X2 is	low, this bi

has no effect.

Reset Value = 0000 0000b


Data Memory


The AT89C51CC03 provides data memory access in two different spaces:

- 1. The internal space mapped in three separate segments:
- the lower 128 Bytes RAM segment.
- the upper 128 Bytes RAM segment.
- the expanded 2048 Bytes RAM segment (ERAM).
- 2. The external space.

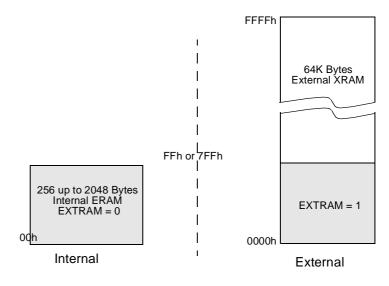

A fourth internal segment is available but dedicated to Special Function Registers, SFRs, (addresses 80h to FFh) accessible by direct addressing mode.

Figure 8 shows the internal and external data memory spaces organization.

Internal Space

Lower 128 Bytes RAM

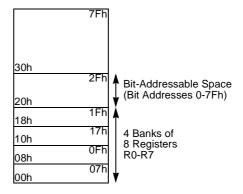

The lower 128 Bytes of RAM (see Figure 8) are accessible from address 00h to 7Fh using direct or indirect addressing modes. The lowest 32 Bytes are grouped into 4 banks of 8 registers (R0 to R7). Two bits RS0 and RS1 in PSW register (see Figure 16) select which bank is in use according to Table 14. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing, and can be used for context switching in interrupt service routines.

Table 14. Register Bank Selection

RS1	RS0	Description
0	0	Register bank 0 from 00h to 07h
0	1	Register bank 0 from 08h to 0Fh
1	0	Register bank 0 from 10h to 17h
1	1	Register bank 0 from 18h to 1Fh

The next 16 Bytes above the register banks form a block of bit-addressable memory space. The C51 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00h to 7Fh.

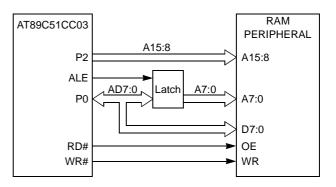
Figure 9. Lower 128 Bytes Internal RAM Organization

Upper 128 Bytes RAM The upper 128 Bytes of RAM are accessible from address 80h to FFh using only indirect addressing mode.

Expanded RAMThe on-chip 2048 Bytes of expanded RAM (ERAM) are accessible from address 0000h
to 07FFh using indirect addressing mode through MOVX instructions. In this address
range, the bit EXTRAM in AUXR register is used to select the ERAM (default) or the
XRAM. As shown in Figure 8 when EXTRAM = 0, the ERAM is selected and when
EXTRAM = 1, the XRAM is selected.

The size of ERAM can be configured by XRS2-0 bit in AUXR register (default size is 2048 Bytes).

Note: Lower 128 Bytes RAM, Upper 128 Bytes RAM, and expanded RAM are made of volatile memory cells. This means that the RAM content is indeterminate after power-up and must then be initialized properly.


External Space

Memory Interface

The external memory interface comprises the external bus (port 0 and port 2) as well as the bus control signals (RD#, WR#, and ALE).

Figure 10 shows the structure of the external address bus. P0 carries address A7:0 while P2 carries address A15:8. Data D7:0 is multiplexed with A7:0 on P0. Table 15 describes the external memory interface signals.

Figure 10. External Data Memory Interface Structure

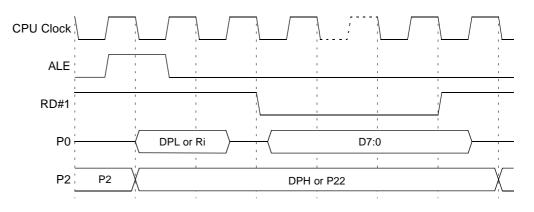
Table 15. External Data Memory Int	terface Signals
------------------------------------	-----------------

Signal Name	Туре	Description	Alternative Function
A15:8	0	Address Lines Upper address lines for the external bus.	P2.7:0
AD7:0	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0
ALE	0	Address Latch Enable ALE signals indicates that valid address information are available on lines AD7:0.	-
RD#	0	Read Read signal output to external data memory.	P3.7
WR#	0	Write Write signal output to external memory.	P3.6

External Bus Cycles

This section describes the bus cycles the AT89C51CC03 executes to read (see Figure 11), and write data (see Figure 12) in the external data memory. External memory cycle takes 6 CPU clock periods. This is equivalent to 12 oscillator

clock period in standard mode or 6 oscillator clock periods in X2 mode. For further information on X2 mode.


Slow peripherals can be accessed by stretching the read and write cycles. This is done using the M0 bit in AUXR register. Setting this bit changes the width of the RD# and WR# signals from 3 to 15 CPU clock periods.

For simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and do not provide precise timing information. For bus cycle timing parameters refer to the Section "AC Characteristics" of the AT89C51CC03 datasheet.

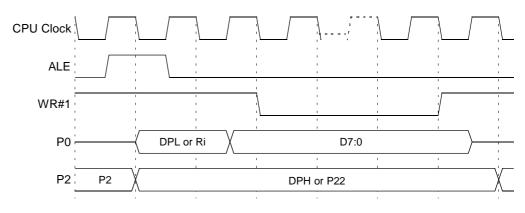
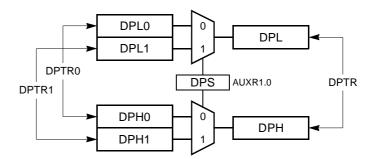


Figure 11. External Data Read Waveforms

Notes: 1. RD# signal may be stretched using M0 bit in AUXR register.2. When executing MOVX @Ri instruction, P2 outputs SFR content.


Notes: 1. WR# signal may be stretched using M0 bit in AUXR register.2. When executing MOVX @Ri instruction, P2 outputs SFR content.

Dual Data Pointer

Description

The AT89C51CC03 implements a second data pointer for speeding up code execution and reducing code size in case of intensive usage of external memory accesses. DPTR 0 and DPTR 1 are seen by the CPU as DPTR and are accessed using the SFR addresses 83h and 84h that are the DPH and DPL addresses. The DPS bit in AUXR1 register (see Figure 18) is used to select whether DPTR is the data pointer 0 or the data pointer 1 (see Figure 13).

Figure 13. Dual Data Pointer Implementation

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare...) are well served by using one data pointer as a "source" pointer and the other one as a "destination" pointer. Hereafter is an example of block move implementation using the two pointers and coded in assembler. The latest C compiler takes also advantage of this feature by providing enhanced algorithm libraries.

The INC instruction is a short (2 Bytes) and fast (6 machine cycle) way to manipulate the DPS bit in the AUXR1 register. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry.

- ; ASCII block move using dual data pointers
- ; Modifies DPTR0, DPTR1, A and PSW
- ; Ends when encountering NULL character
- ; Note: DPS exits opposite to the entry state unless an extra INC AUXR1 is added

AUXR1EQU0A2h

move:movDPTR,#SOURCE ; address of SOURCE incAUXR1 ; switch data pointers movDPTR,#DEST ; address of DEST mv_loop:incAUXR1; switch data pointers movxA,@DPTR; get a byte from SOURCE incDPTR; increment SOURCE address incAUXR1; switch data pointers movx@DPTR,A; write the byte to DEST incDPTR; increment DEST address jnzmv_loop; check for NULL terminator end_move:

Registers

Table 16. PSW Register

PSW (S:8Eh) Program Status Word Register

7	6	5	4	3	2	1	0		
СҮ	AC	F0	RS1	RS0	ov	F1	Р		
Bit Number	Bit Mnemonic	Description	Description						
7	CY	Carry Flag Carry out fro	Carry Flag Carry out from bit 1 of ALU operands.						
6	AC	Auxiliary Ca Carry out fro		ition operands	i.				
5	F0	User Defina	ble Flag 0.						
4-3	RS1:0	-	nk Select Bit e 14 for bits c						
2	OV		Overflow Flag Overflow set by arithmetic operations.						
1	F1	User Defina	User Definable Flag 1						
0	Р		Parity Bit Set when ACC contains an odd number of 1's. Cleared when ACC contains an even number of 1's.						

Reset Value = 0000 0000b

Table 17. AUXR Register

AUXR (S:8Eh) Auxiliary Register

7	6	5	4	3	2	1	0			
-	-	MO	XRS2	XRS1	XRS0	EXTRAM	A0			
Bit Number	Bit Mnemonic	Description	Description							
7-6	-	Reserved The value re	ad from these	bits are indet	erminate. Do	not set this bit.				
5	MO	the RD/ and	0 6							
4-2	XRS1-0	ERAM size: Accessible s XRS 2:0 0 0 0 0 0 1 0 1 1 0	Accessible size of the ERAM XRS 2:0 ERAM size 0 0 0 256 Bytes 0 0 1 512 Bytes 0 1 0 768 Bytes 0 1 1 1024 Bytes							

Bit Number	Bit Mnemonic	Description
1	EXTRAM	Internal/External RAM (00h - FFh) access using MOVX @ Ri/@ DPTR 0 - Internal ERAM access using MOVX @ Ri/@ DPTR. 1 - External data memory access.
0	A0	Disable/Enable ALE) 0 - ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2 mode is used) 1 - ALE is active only during a MOVX or MOVC instruction.

Reset Value = X001 0100b Not bit addressable

Table 18. AUXR1 Register

AUXR1 (S:A2h) Auxiliary Control Register 1

7	6	5	4	3	2	1	0		
-	-	ENBOOT	-	GF3	0	-	DPS		
Bit Number	Bit Mnemonic	Description	Description						
7-6	-	Reserved The value rea	Reserved The value read from these bits is indeterminate. Do not set these bits.						
5	ENBOOT	Set this bit fo	Enable Boot Flash Set this bit for map the boot Flash between F800h -FFFFh Clear this bit for disable boot Flash.						
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
3	GF3	General-pur	pose Flag 3						
2	0	-	Always Zero This bit is stuck to logic 0 to allow INC AUXR1 instruction without affecting GF3 flag.						
1	-	Reserved fo	Reserved for Data Pointer Extension.						
0	DPS	Set to select	Data Pointer Select Bit Set to select second dual data pointer: DPTR1. Clear to select first dual data pointer: DPTR0.						

Reset Value = XXXX 00X0b

Power Management

Introduction

Two power reduction modes are implemented in the T89C51CC01: the Idle mode and the Power-Down mode. These modes are detailed in the following sections. In addition to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 mode detailed in Section "Clock", page 17.

Reset

A reset is required after applying power at turn-on. To achieve a valid reset, the reset signal must be maintained for at least 2 machine cycles (24 oscillator clock periods) while the oscillator is running and stabilized and VCC established within the specified operating ranges. A device reset initializes the T89C51CC01 and vectors the CPU to address 0000h. RST input has a pull-down resistor allowing power-on reset by simply connecting an external capacitor to V_{DD} as shown in Figure 14. Resistor value and input characteristics are discussed in the Section "DC Characteristics" of the T89C51CC01 datasheet. The status of the Port pins during reset is detailed in Table 19.

Figure 14. Reset Circuitry and Power-On Reset

Mode	Port 0	Port 1	Port 2	Port 3	Port 4	ALE	PSEN#
Reset	Floating	High	High	High	High	High	High
Idle	Data	Data	Data	Data	Data	High	High
Power- Down	Data	Data	Data	Data	Data	Low	Low

Table 19. Pin Conditions in Special Operating Modes

Reset Recommendation to Prevent Flash Corruption

A bad reset sequence will lead to bad microcontroller initialization and system registers like SFR's, Program Counter, etc. will not be correctly initialized. A bad initialization may lead to unpredictable behaviour of the C51 microcontroller.

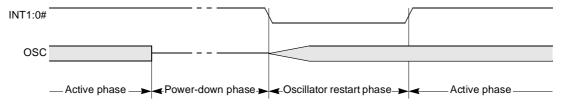
An example of this situation may occur in an instance where the bit ENBOOT in AUXR1 register is initialized from the hardware bit BLJB upon reset. Since this bit allows mapping of the bootloader in the code area, a reset failure can be critical.

If one wants the ENBOOT cleared inorder to unmap the boot from the code area (yet due to a bad reset) the bit ENBOOT in SFR's may be set. If the value of Program Counter is accidently in the range of the boot memory addresses then a flash access (write or erase) may corrupt the Flash on-chip memory.

It is recommended to use an external reset circuitry featuring power supply monitoring to prevent system malfunction during periods of insufficient power supply voltage(power supply failure, power supply switched off).

AMEL_®

Idle Mode	Idle mode is a power reduction mode that reduces the power consumption. In this mode program execution halts. Idle mode freezes the clock to the CPU at known states while the peripherals continue to be clocked. The CPU status before entering Idle mode is preserved, i.e., the program counter and program status word register retain their data for the duration of Idle mode. The contents of the SFRs and RAM are also retained. The status of the Port pins during Idle mode is detailed in Table 19.					
Entering Idle Mode	To enter Idle mode, set the IDL bit in PCON register (see Table 20). The T89C51CC01 enters Idle mode upon execution of the instruction that sets IDL bit. The instruction that sets IDL bit is the last instruction executed.					
	Note: If IDL bit and PD bit are set simultaneously, the T89C51CC01 enters Power-Down mode. Then it does not go in Idle mode when exiting Power-Down mode.					
Exiting Idle Mode	There are two ways to exit Idle mode:					
-	1. Generate an enabled interrupt.					
	 Hardware clears IDL bit in PCON register which restores the clock to the CPU. Execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Idle mode. The general purpose flags (GF1 and GF0 in PCON register) may be used to indicate whether an interrupt occurred during normal operation or during Idle mode. When Idle mode is exited by an interrupt, the interrupt service routine may examine GF1 and GF0. 					
	2. Generate a reset.					
	 A logic high on the RST pin clears IDL bit in PCON register directly and asynchronously. This restores the clock to the CPU. Program execution momentarily resumes with the instruction immediately following the instruction that activated the Idle mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the T89C51CC01 and vectors the CPU to address C:0000h. 					
	Note: During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated Idle mode should not write to a Port pin or to the external RAM.					
Power-Down Mode	The Power-Down mode places the T89C51CC01 in a very low power state. Power- Down mode stops the oscillator, freezes all clock at known states. The CPU status prior to entering Power-Down mode is preserved, i.e., the program counter, program status word register retain their data for the duration of Power-Down mode. In addition, the SFRs and RAM contents are preserved. The status of the Port pins during Power-Down mode is detailed in Table 19.					
	Note: VDD may be reduced to as low as V _{RET} during Power-Down mode to further reduce power dissipation. Take care, however, that VDD is not reduced until Power-Down mode is invoked.					
Entering Power-Down Mode	To enter Power-Down mode, set PD bit in PCON register. The T89C51CC01 enters the Power-Down mode upon execution of the instruction that sets PD bit. The instruction that sets PD bit is the last instruction executed.					
Exiting Power-Down Mode	Note: If VDD was reduced during the Power-Down mode, do not exit Power-Down mode until VDD is restored to the normal operating level.					


There are two ways to exit the Power-Down mode:

- 1. Generate an enabled external interrupt.
 - The T89C51CC01 provides capability to exit from Power-Down using INT0#, INT1#.

Hardware clears PD bit in PCON register which starts the oscillator and restores the clocks to the CPU and peripherals. Using INTx# input, execution resumes when the input is released (see Figure 15). Execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Power-Down mode.

- Note: The external interrupt used to exit Power-Down mode must be configured as level sensitive (INT0# and INT1#) and must be assigned the highest priority. In addition, the duration of the interrupt must be long enough to allow the oscillator to stabilize. The execution will only resume when the interrupt is deasserted.
- Note: Exit from power-down by external interrupt does not affect the SFRs nor the internal RAM content.

Figure 15. Power-Down Exit Waveform Using INT1:0#

- 2. Generate a reset.
 - A logic high on the RST pin clears PD bit in PCON register directly and asynchronously. This starts the oscillator and restores the clock to the CPU and peripherals. Program execution momentarily resumes with the instruction immediately following the instruction that activated Power-Down mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the T89C51CC01 and vectors the CPU to address 0000h.
- Note: During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated the Power-Down mode should not write to a Port pin or to the external RAM.
- Note: Exit from power-down by reset redefines all the SFRs, but does not affect the internal RAM content.

Registers

Table 20. PCON RegisterPCON (S87:h) Power configuration Register

7	6	5	4	3	2	1	0		
-	-	-	-	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic	Description	Description						
7-4	-	Reserved The value rea	Reserved The value read from these bits is indeterminate. Do not set these bits.						
3	GF1	One use is to	General Purpose flag 1 One use is to indicate whether an interrupt occurred during normal operation or during Idle mode.						
2	GF0	General Pur One use is to during Idle m	indicate whe	ether an interru	upt occurred d	uring normal o	operation or		
1	PD	Cleared by h Set to activat	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.						
0	IDL	Cleared by h Set to activat	dle Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Idle mode. f IDL and PD are both set, PD takes precedence.						

Reset Value= XXXX 0000b

EEPROM Data Memory	The 2-Kbyte on-chip EEPROM memory block is located at addresses 0000h to 07FFh of the XRAM/ERAM memory space and is selected by setting control bits in the EECON register. A read in the EEPROM memory is done with a MOVX instruction.
	A physical write in the EEPROM memory is done in two steps: write data in the column latches and transfer of all data latches into an EEPROM memory row (programming).
	The number of data written on the page may vary from 1 up to 128 Bytes (the page size). When programming, only the data written in the column latch is programmed and a ninth bit is used to obtain this feature. This provides the capability to program the whole memory by Bytes, by page or by a number of Bytes in a page. Indeed, each ninth bit is set when the writing the corresponding byte in a row and all these ninth bits are reset after the writing of the complete EEPROM row.
Write Data in the Column Latches	Data is written by byte to the column latches as for an external RAM memory. Out of the 11 address bits of the data pointer, the 4 MSBs are used for page selection (row) and 7 are used for byte selection. Between two EEPROM programming sessions, all the addresses in the column latches must stay on the same page, meaning that the 4 MSB must no be changed.
	The following procedure is used to write to the column latches:
	Save and disable interrupt.
	Set bit EEE of EECON register
	Load DPTR with the address to write
	Store A register with the data to be written
	Execute a MOVX @DPTR, A
	 If needed loop the three last instructions until the end of a 128 Bytes page
	Restore interrupt.
	Note: The last page address used when loading the column latch is the one used to select the page programming address.
Programming	The EEPROM programming consists of the following actions:
	• writing one or more Bytes of one page in the column latches. Normally, all Bytes must belong to the same page; if not, the first page address will be latched and the others discarded.
	• launching programming by writing the control sequence (50h followed by A0h) to the EECON register.
	• EEBUSY flag in EECON is then set by hardware to indicate that programming is in progress and that the EEPROM segment is not available for reading.
	• The end of programming is indicated by a hardware clear of the EEBUSY flag.
	Note: The sequence 5xh and Axh must be executed without instructions between then other- wise the programming is aborted.
Read Data	The following procedure is used to read the data stored in the EEPROM memory:
	Save and disable interrupt
	Set bit EEE of EECON register
	Load DPTR with the address to read
	Execute a MOVX A, @DPTR
	Restore interrupt

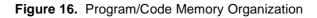

```
*******
;* NAME: api rd eeprom byte
;* DPTR contain address to read.
;* Acc contain the reading value
;* NOTE: before execute this function, be sure the EEPROM is not BUSY
api_rd_eeprom_byte:
MOV EECON, #02h; map EEPROM in XRAM space
MOVX A, @DPTR
MOV EECON, #00h; unmap EEPROM
ret
;* NAME: api ld eeprom cl
;* DPTR contain address to load
;* Acc contain value to load
;* NOTE: in this example we load only 1 byte, but it is possible upto
;* 128 Bytes.
;* before execute this function, be sure the EEPROM is not BUSY
api ld eeprom cl:
MOV EECON, #02h ; map EEPROM in XRAM space
MOVX @DPTR, A
MOVEECON, #00h; unmap EEPROM
ret
;* NAME: api wr eeprom
;* NOTE: before execute this function, be sure the EEPROM is not BUSY
api wr eeprom:
MOV EECON, #050h
MOV EECON, #0A0h
ret
```

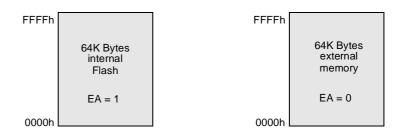
Registers

Table 21. EECON Register

EECON (S:0D2h) EEPROM Control Register

7	6	5	4	3	2	1	0		
EEPL3	EEPL2	EEPL1	EEPL0	-	-	EEE	EEBUSY		
Bit Number	Bit Mnemonic	Descriptio	Description						
7-4	EEPL3-0	•	Programming Launch command bits Write 5Xh followed by AXh to EEPL to launch the programming.						
3	-	Reserved The value r	ead from this	bit is indeterm	ninate. Do not	set this bit.			
2	-	Reserved The value r	ead from this	bit is indeterm	ninate. Do not	set this bit.			
1	EEE	Set to map latches)	Enable EEPROM Space bit Set to map the EEPROM space during MOVX instructions (Write in the column atches) Clear to map the XRAM space during MOVX.						
0	EEBUSY	Set by hard Cleared by	Programming Busy flag Set by hardware when programming is in progress. Cleared by hardware when programming is done. Can not be set or cleared by software.						

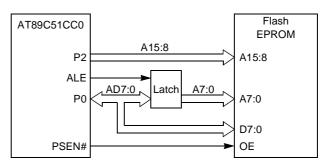

Reset Value = XXXX XX00b Not bit addressable



Program/Code Memory

The AT89C51CC03 implement 64K Bytes of on-chip program/code memory. Figure 16 shows the partitioning of internal and external program/code memory spaces depending on the product.

The Flash memory increases EPROM and ROM functionality by in-circuit electrical erasure and programming. Thanks to the internal charge pump, the high voltage needed for programming or erasing Flash cells is generated on-chip using the standard VDD voltage. Thus, the Flash Memory can be programmed using only one voltage and allows In-System Programming commonly known as ISP. Hardware programming mode is also available using specific programming tool.


External Code Memory Access

Memory Interface

The external memory interface comprises the external bus (port 0 and port 2) as well as the bus control signals (PSEN#, and ALE).

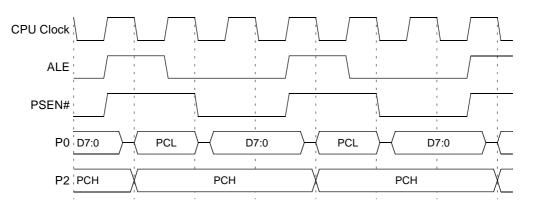
Figure 17 shows the structure of the external address bus. P0 carries address A7:0 while P2 carries address A15:8. Data D7:0 is multiplexed with A7:0 on P0. Table 17 describes the external memory interface signals.

Figure 17. External Code Memory Interface Structure

Table 22. External Code Memory Interface Signals

Signal Name	Туре	Description	Alternate Function
A15:8	0	Address Lines Upper address lines for the external bus.	P2.7:0
AD7:0	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0
ALE	0	Address Latch Enable ALE signals indicates that valid address information are available on lines AD7:0.	-
PSEN#	0	Program Store Enable Output This signal is active low during external code fetch or external code read (MOVC instruction).	-

External Bus Cycles


This section describes the bus cycles the AT89C51CC03 executes to fetch code (see Figure 18) in the external program/code memory.

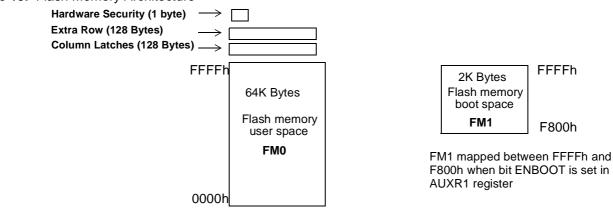
External memory cycle takes 6 CPU clock periods. This is equivalent to 12 oscillator clock period in standard mode or 6 oscillator clock periods in X2 mode. For further information on X2 mode see section "Clock ".

For simplicity, the accompanying figure depicts the bus cycle waveforms in idealized form and do not provide precise timing information.

For bus cycling parameters refer to the 'AC-DC parameters' section.

Figure 18. External Code Fetch Waveforms

Flash Memory Architecture


AT89C51CC03 features two on-chip Flash memories:

- Flash memory FM0: containing 64K Bytes of program memory (user space) organized into 128 byte pages,
- Flash memory FM1: 2K Bytes for boot loader and Application Programming Interfaces (API).

The FM0 can be program by both parallel programming and Serial In-System Programming (ISP) whereas FM1 supports only parallel programming by programmers. The ISP mode is detailed in the "In-System Programming" section.

All Read/Write access operations on Flash Memory by user application are managed by a set of API described in the "In-System Programming" section.

Figure 19. Flash Memory Architecture

FM0 Memory Architecture	 The Flash memory is made up of 4 blocks (see Figure 19): The memory array (user space) 64K Bytes The Extra Row The Hardware security bits The column latch registers
User Space	This space is composed of a 64K Bytes Flash memory organized in 512 pages of 128 Bytes. It contains the user's application code.
Extra Row (XRow)	This row is a part of FM0 and has a size of 128 Bytes. The extra row may contain infor- mation for boot loader usage.
Hardware Security Byte	The Hardware security Byte space is a part of FM0 and has a size of 1 byte. The 4 MSB can be read/written by software, the 4 LSB can only be read by software and written by hardware in parallel mode.
Column Latches	The column latches, also part of FM0, have a size of full page (128 Bytes). The column latches are the entrance buffers of the three previous memory locations (user array, XROW and Hardware security byte).
Cross Flash Memory Access Description	The FM0 memory can be program only from FM1. Programming FM0 from FM0 or from external memory is impossible.
	The FM1 memory can be program only by parallel programming.

The Table 23 show all software Flash access allowed.

		Action	FM0 (user Flash)	FM1 (boot Flash)
		Read	ok	-
E	FM0	Load column latch	ok	-
g fro	(user Flash)	Write	-	-
executing from		Read	ok	ok
exe	FM1	Load column latch	ok	-
Code	(boot Flash)	Write	ok	-
		Read	-	-
	External memory	Load column latch	-	-
	EA = 0	Write	-	-

Table 23. Cross Flash Memory Access

Overview of FM0The CPU interfaces to the Flash memory through the FCON register and AUXR1Operationsregister.

These registers are used to:

- Map the memory spaces in the adressable space
- Launch the programming of the memory spaces
- Get the status of the Flash memory (busy/not busy)

Mapping of the Memory Space By default, the user space is accessed by MOVC instruction for read only. The column latches space is made accessible by setting the FPS bit in FCON register. Writing is possible from 0000h to FFFFh, address bits 6 to 0 are used to select an address within a page while bits 15 to 7 are used to select the programming address of the page. Setting FPS bit takes precedence on the EXTRAM bit in AUXR register.

The other memory spaces (user, extra row, hardware security) are made accessible in the code segment by programming bits FMOD0 and FMOD1 in FCON register in accordance with Table 24. A MOVC instruction is then used for reading these spaces.

Table 24. FM0 Blocks Select Bits

FMOD1	FMOD0	FM0 Adressable space
0	0	User (0000h-FFFFh)
0	1	Extra Row(FF80h-FFFFh)
1	0	Hardware Security Byte (0000h)
1	1	Reserved

Launching Programming FPL3:0 bits in FCON register are used to secure the launch of programming. A specific sequence must be written in these bits to unlock the write protection and to launch the programming. This sequence is 5xh followed by Axh. Table 25 summarizes the memory

spaces to program according to FMOD1:0 bits.

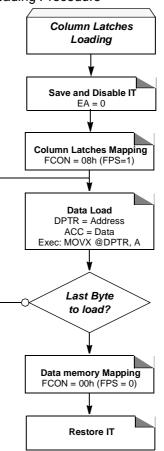


Table 25. Programming	Spaces	
-------------------------------	--------	--

		Write to FCON						
		FPL3:0 FPS FMOD1 FMOD0				Operation		
		5	Х	0	0	No action		
	User	A	х	0	0	Write the column latches in user space		
		5	х	0	1	No action		
	Extra Row	A	х	0	1	Write the column latches in extra row space		
	Hardware	5	Х	1	0	No action		
	Security Byte	A	х	1	0	Write the fuse bits space		
		5 X 1 1 No action						
	Reserved A X 1 1 No action					No action		
Status of the Flash Memory	 otherwise the programming is aborted. 2. Interrupts that may occur during programming time must be disabled to avoid an spurious exit of the programming mode. 							
Status of the Flash Memory	The bit FBUSY in FCON register is used to indicate the status of programming. FBUSY is set when programming is in progress.							
	FDUSTISS	set when pro	ogramming	is in progre	355.			
Selecting FM1	The bit EN	300T in Al	JXR1 regist	er is used t	o map FM1	from F800h to FFFFh.		
Loading the Column Latches	 The bit ENBOOT in AUXR1 register is used to map FM1 from F800h to FFFFh. Any number of data from 1-byte to 128 Bytes can be loaded in the column latches. Th provides the capability to program the whole memory by byte, by page or by any numb of Bytes in a page. When programming is launched, an automatic erase of the locations loaded in the column latches is first performed, then programming is effectively done. Thus no page block erase is needed and only the loaded data are programmed in the correspondir page. The following procedure is used to load the column latches and is summarized Figure 20: Disable interrupt and map the column latch space by setting FPS bit. Load the DPTR with the address to load. Execute the MOVX @DPTR, A instruction. If needed loop the three last instructions until the page is completely loaded. unmap the column latch and Enable Interrupt 				byte, by page or by any number the locations loaded in the col- ectively done. Thus no page or ogrammed in the corresponding latches and is summarized in y setting FPS bit.			

AT89C51CC03

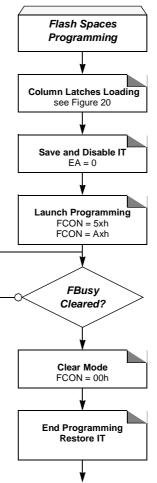
Note: The last page address used when loading the column latch is the one used to select the page programming address.

Programming the Flash Spaces

User

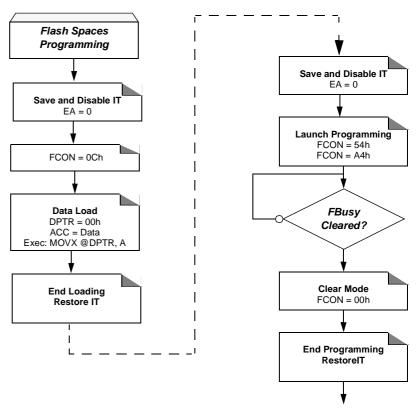
The following procedure is used to program the User space and is summarized in Figure 21:

- Load up to one page of data in the column latches from address 0000h to FFFFh.
- Disable the interrupts.
- Launch the programming by writing the data sequence 50h followed by A0h in FCON register (only from FM1).
 - The end of the programming indicated by the FBUSY flag cleared.
- Enable the interrupts.


Extra Row

- The following procedure is used to program the Extra Row space and is summarized in Figure 21:
- Load data in the column latches from address FF80h to FFFFh.
- Disable the interrupts.
- Launch the programming by writing the data sequence 52h followed by A2h in FCON register (only from FM1).
 The end of the programming indicated by the FBUSY flag cleared.
- Enable the interrupts.

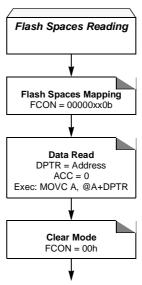
Figure 21. Flash and Extra Row Programming Procedure



Hardware Security Byte

The following procedure is used to program the Hardware Security Byte space and is summarized in Figure 22:

- Set FPS and map Hardware byte (FCON = 0x0C)
- Save and disable the interrupts.
- Load DPTR at address 0000h.
- Load Accumulator register with the data to load.
- Execute the MOVX @DPTR, A instruction.
- Launch the programming by writing the data sequence 54h followed by A4h in FCON register (only from FM1).
 The end of the programming indicated by the FBusy flag cleared.
- Restore the interrupts.


Reading the Flash Spaces

User	The following procedure is used to read the User space:
	 Read one byte in Accumulator by executing MOVC A,@A+DPTR with A+DPTR=read@.
	Note: FCON is supposed to be reset when not needed.
Extra Row	The following procedure is used to read the Extra Row space and is summarized in Figure 23:
	 Map the Extra Row space by writing 02h in FCON register.
	 Read one byte in Accumulator by executing MOVC A,@A+DPTR with A = 0 and DPTR = FF80h to FFFFh.
	Clear FCON to unmap the Extra Row.
Hardware Security Byte	The following procedure is used to read the Hardware Security space and is summarized in Figure 23:
	 Map the Hardware Security space by writing 04h in FCON register.
	 Read the byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 and DPTR = 0000h.
	Clear FCON to unmap the Hardware Security Byte.

Figure 23. Reading Procedure

Flash Protection from Parallel Programming

The three lock bits in Hardware Security Byte (see "In-System Programming" section) are programmed according to Table 26 provide different level of protection for the onchip code and data located in FM0 and FM1.

The only way to write this bits are the parallel mode. They are set by default to level 4

Table 26.	Program	Lock bit
-----------	---------	----------

Program Lock Bits				
Security Level	LB0	LB1	LB2	Protection Description
1	U	U	U	No program lock features enabled. MOVC instruction executed from external program memory returns non encrypted data.
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code Bytes from internal memory, EA is sampled and latched on reset, and further parallel programming of the Flash is disabled.
3	U	Ρ	U	Same as 2, also verify through parallel programming interface is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

Program Lock bits

U: unprogrammed

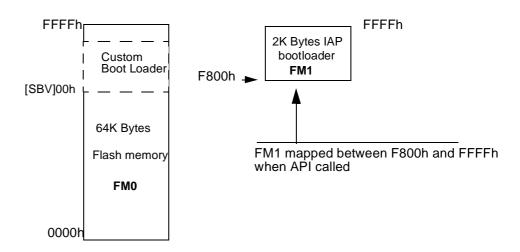
P: programmed

WARNING: Security level 2 and 3 should only be programmed after Flash and Core verification.

Preventing Flash Corruption See the "Power Management" section.

Registers

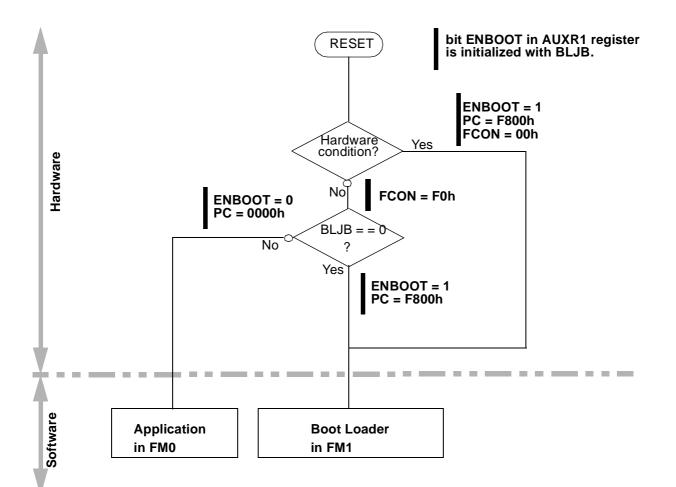
Table 27. FCON Register


FCON (S:D1h) Flash Control Register

7	6	5	4	3	2	1	0	
FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY	
Bit Number	Bit Mnemonic	Description						
7-4	FPL3:0	Write 5Xh fol	Programming Launch Command Bits Write 5Xh followed by AXh to launch the programming according to FMOD1:0 (see Table 25)					
3	FPS	Flash Map Program Space Set to map the column latch space in the data memory space. Clear to re-map the data memory space.						
2-1	FMOD1:0	Flash Mode See Table 24 or Table 25.						
0	FBUSY	Clear by hard	•	ogramming is in programming is ftware.				

In-System Programming (ISP)	 With the implementation of the User Space (FM0) and the Boot Space (FM1) in Flash technology the AT89C51CC03 allows the system engineer the development of applications with a very high level of flexibility. This flexibility is based on the possibility to alter the customer program at any stages of a product's life: Before assembly the 1st personalization of the product by programming in the FM0 and if needed also a customized Boot loader in the FM1. Atmel provide also a standard Boot loader by default UART or CAN. After assembling on the PCB in its final embedded position by serial mode via the
	CAN bus or UART. This In-System Programming (ISP) allows code modification over the total lifetime of the product.
	Besides the default Boot loader Atmel provide to the customer also all the needed Appli- cation-Programming-Interfaces (API) which are needed for the ISP. The API are located also in the Boot memory.
	This allow the customer to have a full use of the 64-Kbyte user memory.
Flash Programming and Erasure	 There are three methods of programming the Flash memory: The Atmel bootloader located in FM1 is activated by the application. Low level API routines (located in FM1)will be used to program FM0. The interface used for serial downloading to FM0 is the UART or the CAN. API can be called also by the user's bootloader located in FM0 at [SBV]00h. A further method exists in activating the Atmel boot loader by hardware activation. The FM0 can be programmed also by the parallel mode using a programmer.

Boot Process


Software Boot Process Example Many algorithms can be used for the software boot process. Before describing them, The description of the different flags and Bytes is given below:

	 Boot Loader Jump Bit (BLJB): This bit indicates if on RESET the user wants to jump to this application at address @0000h on FM0 or execute the boot loader at address @F800h on FM1. BLJB = 0 on parts delivered with bootloader programmed. To read or modify this bit, the APIs are used.
	 Boot Vector Address (SBV): This byte contains the MSB of the user boot loader address in FM0. The default value of SBV is FFh (no user boot loader in FM0). To read or modify this byte, the APIs are used.
	Extra Byte (EB) and Boot Status Byte (BSB): - These Bytes are reserved for customer use. - To read or modify these Bytes, the APIs are used.
Hardware Boot Process	At the falling edge of RESET, the bit ENBOOT in AUXR1 register is initialized with the value of Boot Loader Jump Bit (BLJB).
	 Further at the falling edge of RESET if the following conditions (called Hardware condition) are detected: PSEN low, EA high, ALE high (or not connected). After Hardware Condition the FCON register is initialized with the value 00h and the PC is initialized with F800h (FM1). The Hardware condition makes the bootloader to be executed, whatever BLJB value is. If no hardware condition is detected, the FCON register is initialized with the value F0h. Check of the BLJB value. If bit BLJB = 1: User application in FM0 will be started at @0000h (standard reset). If bit BLJB = 0: Boot loader will be started at @F800h in FM1.

Application Programming Interface

Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made by functions.

All these APIs are describe in an documentation: "In-System Programing: Flash Library for AT89C51CC03".

This is available on Atmel's web site, www.atmel.com.

XROW Bytes

Table 27. XROW Mapping

Description	Default Value	Address
Copy of the Manufacturer Code	58h	30h
Copy of the Device ID#1: Family code	D7h	31h
Copy of the Device ID#2: Memories size and type	F7h	60h
Copy of the Device ID#3: Name and Revision	FFh	61h

Hardware Security Byte

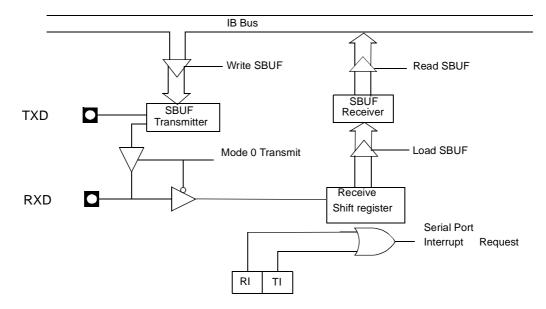
 Table 28.
 Hardware Security Byte

7	6	5	4	3	2	1	0		
X2B	BLJB	-	-	-	LB2	LB1	LB0		
Bit Number	Bit Mnemonic	Description	Description						
7	X2B		X2 Bit Set this bit to start in standard mode Clear this bit to start in X2 mode.						
6	BLJB		ne user's app	lication on nex r(@F800h) loo	· ·	0000h) located	d in FM0,		
5-3	-	Reserved The value rea	Reserved The value read from these bits are indeterminate.						
2-0	LB2:0	Lock Bits							

Default value after erasing chip: FFh

Notes: 1. Only the 4 MSB bits can be accessed by software.

2. The 4 LSB bits can only be accessed by parallel mode.


Serial I/O Port

The AT89C51CC03 I/O serial port is compatible with the I/O serial port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as a Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

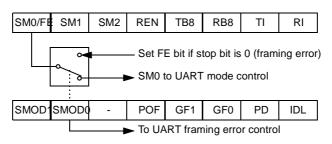
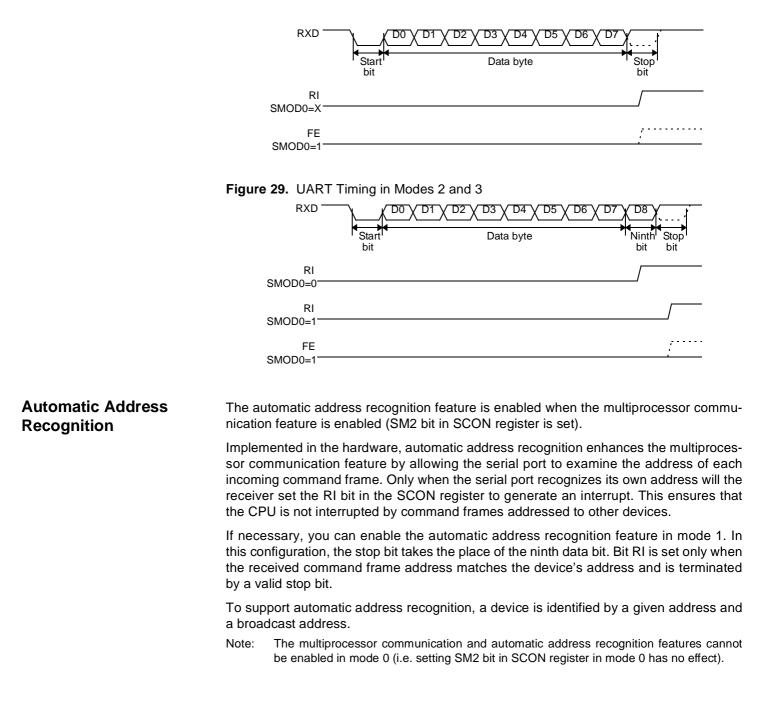

- Framing error detection
- Automatic address recognition

Figure 26. Serial I/O Port Block Diagram

Framing Error Detection Framing bit error detection is provided for the three asynchronous modes. To enable the framing bit error detection feature, set SMOD0 bit in PCON register.

Figure 27. Framing Error Block Diagram


When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register bit is set.

The software may examine the FE bit after each reception to check for data errors. Once set, only software or a reset clears the FE bit. Subsequently received frames with valid stop bits cannot clear the FE bit. When the FE feature is enabled, RI rises on the stop bit instead of the last data bit (See Figure 28. and Figure 29.).

Figure 28. UART Timing in Mode 1

Given Address

Each device has an individual address that is specified in the SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed. To address a device by its individual address, the SADEN mask byte must be 1111 1111b.

For example:

SADDR0101 0110b SADEN1111 1100b Given0101 01XXb

Here is an example of how to use given addresses to address different slaves:

Slave A:SADDR1111 0001b SADEN1111 1010b Given1111 0X0Xb

Slave B:SADDR1111 0011b SADEN1111 1001b Given1111 0XX1b

Slave C:SADDR1111 0010b <u>SADEN1111 1101b</u> Given1111 00X1b

The SADEN byte is selected so that each slave may be addressed separately.

For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).

For slave A, bit 1 is a 0; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves A and B, but not slave C, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

SADDR0101 0110b SADEN1111 1100b SADDR OR SADEN1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:SADDR1111 0001b <u>SADEN1111 1010b</u> Given1111 1X11b,

Slave B:SADDR1111 0011b SADEN1111 1001b Given1111 1X11B,

Slave C:SADDR=1111 0010b SADEN1111 1101b Given1111 1111b

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

Registers

Table 30. SCON Register

SCON (S:98h) Serial Control Register

7	6	5	4	3	2	1	0				
FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI				
Bit Number	Bit Mnemonic	Description	Description								
7	FE	Clear to rese	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected.								
	SM0	•	Iode bit 0 (S I for serial por	MOD0=0) t mode select	ion.						
6	SM1	<u>SM0</u> <u>SM1</u> 0 0 0 1	$\begin{array}{c cccc} \hline 0 & \text{Shift Register} & F_{\text{XTAL}}/12 \text{ (or } F_{\text{XTAL}}/6 \text{ in mode } X2) \\ 1 & 8-\text{bit UART} & \text{Variable} \\ 0 & 9-\text{bit UART} & F_{\text{XTAL}}/64 \text{ or } F_{\text{XTAL}}/32 \end{array}$								
5	SM2	Clear to disa	Serial port Mode 2 bit/Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3.								
4	REN	Clear to disa	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.								
3	TB8	Clear to trans	Bit 8/Ninth b smit a logic 0 nit a logic 1 in		in modes 2 a	and 3					
2	RB8	Cleared by h	Receiver Bit 8/Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1.								
1	TI	Clear to ackr Set by hardw	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.								
0	RI	Clear to ackr Set by hardw	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 28. and Figure 29. in the other modes.								

Reset Value = 0000 0000b Bit addressable

Table 31. SADEN Register

SADEN (S:B9h) Slave Address Mask Register

7	6	5	4	3	2	1	0	
_	-	-	-	-	-	-	-	
Bit Number	Bit Mnemonic	Description						
7-0		Mask Data for Slave Individual Address						

Reset Value = 0000 0000b Not bit addressable

Table 32. SADDR Register

SADDR (S:A9h) Slave Address Register

7	6	5	4	3	2	1	0			
-	-									
Bit Number	Bit Mnemonic	Description	Description							
7-0		Slave Individual Address								

Reset Value = 0000 0000b Not bit addressable

Table 33. SBUF Register

SBUF (S:99h) Serial Data Buffer

7	6	5	4	3	2	1	0		
_	-								
Bit Number	Bit Mnemonic	Description	Description						
7-0		Data sent/received by Serial I/O Port							

Reset Value = 0000 0000b Not bit addressable

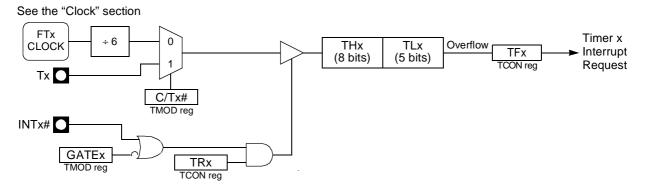
Table 34. PCON Register

PCON (S:87h) Power Control Register

7	6	5	4	3	2	1	0				
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL				
Bit Number	Bit Mnemonic	Description	Description								
7	SMOD1		Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.								
6	SMOD0	Clear to sele	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to select FE bit in SCON register.								
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	POF	Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.									
3	GF1			al-purpose usa rpose usage.	age.						
2	GF0	Cleared by u	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.								
1	PD	Cleared by h	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.								
0	IDL	Clear by har	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.								

Reset Value = 00X1 0000b Not bit addressable

Timers/Counters	The AT89C51CC03 implements two general-purpose, 16-bit Timers/Counters. Such are identified as Timer 0 and Timer 1, and can be independently configured to operate in a variety of modes as a Timer or an event Counter. When operating as a Timer, the Timer/Counter runs for a programmed length of time, then issues an interrupt request. When operating as a Counter, the Timer/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues an interrupt request. The various operating modes of each Timer/Counter are described in the following sections.
Timer/Counter Operations	A basic operation is Timer registers THx and TLx ($x = 0, 1$) connected in cascade to form a 16-bit Timer. Setting the run control bit (TRx) in TCON register (see Figure 35) turns the Timer on by allowing the selected input to increment TLx. When TLx overflows it increments THx; when THx overflows it sets the Timer overflow flag (TFx) in TCON register. Setting the TRx does not clear the THx and TLx Timer registers. Timer registers can be accessed to obtain the current count or to enter preset values. They can be read at any time but TRx bit must be cleared to preset their values, otherwise the behavior of the Timer/Counter is unpredictable.
	The C/Tx# control bit selects Timer operation or Counter operation by selecting the divided-down peripheral clock or external pin Tx as the source for the counted signal. TRx bit must be cleared when changing the mode of operation, otherwise the behavior of the Timer/Counter is unpredictable.
	For Timer operation (C/Tx# = 0), the Timer register counts the divided-down peripheral clock. The Timer register is incremented once every peripheral cycle (6 peripheral clock periods). The Timer clock rate is $F_{PER}/6$, i.e. $F_{OSC}/12$ in standard mode or $F_{OSC}/6$ in X2 mode.
	For Counter operation (C/Tx# = 1), the Timer register counts the negative transitions on the Tx external input pin. The external input is sampled every peripheral cycles. When the sample is high in one cycle and low in the next one, the Counter is incremented. Since it takes 2 cycles (12 peripheral clock periods) to recognize a negative transition, the maximum count rate is $F_{PER}/12$, i.e. $F_{OSC}/24$ in standard mode or $F_{OSC}/12$ in X2 mode. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full peripheral cycle.
Timer 0	Timer 0 functions as either a Timer or event Counter in four modes of operation. Figure 30 to Figure 33 show the logical configuration of each mode.
	Timer 0 is controlled by the four lower bits of TMOD register (see Figure 36) and bits 0, 1, 4 and 5 of TCON register (see Figure 35). TMOD register selects the method of Timer gating (GATE0), Timer or Counter operation (T/C0#) and mode of operation (M10 and M00). TCON register provides Timer 0 control functions: overflow flag (TF0), run control bit (TR0), interrupt flag (IE0) and interrupt type control bit (IT0).
	For normal Timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by the selected input. Setting GATE0 and TR0 allows external pin INT0# to control Timer operation.
	Timer 0 overflow (count rolls over from all 1s to all 0s) sets TF0 flag generating an inter- rupt request.
	It is important to stop Timer/Counter before changing mode.



Mode 0 (13-bit Timer)

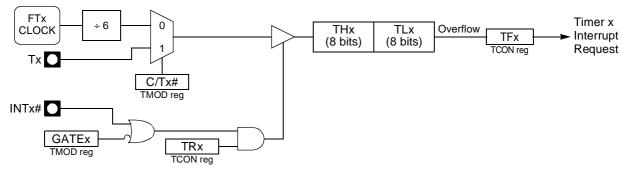
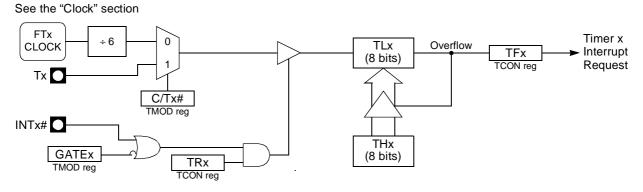

Mode 0 configures Timer 0 as an 13-bit Timer which is set up as an 8-bit Timer (TH0 register) with a modulo 32 prescaler implemented with the lower five bits of TL0 register (see Figure 30). The upper three bits of TL0 register are indeterminate and should be ignored. Prescaler overflow increments TH0 register.

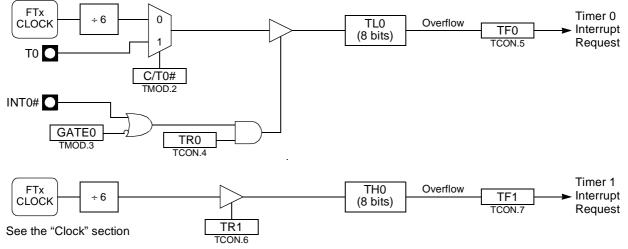
Figure 30. Timer/Counter x (x = 0 or 1) in Mode 0

Mode 1 (16-bit Timer)


- Mode 1 configures Timer 0 as a 16-bit Timer with TH0 and TL0 registers connected in cascade (see Figure 31). The selected input increments TL0 register.
- Figure 31. Timer/Counter x (x = 0 or 1) in Mode 1 See the "Clock" section

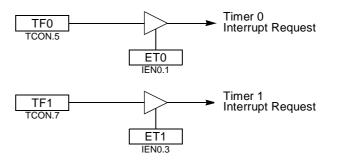
Mode 2 (8-bit Timer with Auto-Reload)

Mode 2 configures Timer 0 as an 8-bit Timer (TL0 register) that automatically reloads from TH0 register (see Figure 32). TL0 overflow sets TF0 flag in TCON register and reloads TL0 with the contents of TH0, which is preset by software. When the interrupt request is serviced, hardware clears TF0. The reload leaves TH0 unchanged. The next reload value may be changed at any time by writing it to TH0 register.


Figure 32. Timer/Counter x (x = 0 or 1) in Mode 2

Mode 3 (Two 8-bit Timers)

Mode 3 configures Timer 0 such that registers TL0 and TH0 operate as separate 8-bit Timers (see Figure 33). This mode is provided for applications requiring an additional 8-bit Timer or Counter. TL0 uses the Timer 0 control bits C/T0# and GATE0 in TMOD register, and TR0 and TF0 in TCON register in the normal manner. TH0 is locked into a Timer function (counting F_{PER} /6) and takes over use of the Timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of Timer 1 is restricted when Timer 0 is in mode 3.


Figure 33. Timer/Counter 0 in Mode 3: Two 8-bit Counters

Timr 1	Timer 1 is identical to Timer 0 excepted for Mode 3 which is a hold-count mode. The fol- lowing comments help to understand the differences:
	• Timer 1 functions as either a Timer or event Counter in three modes of operation. Figure 30 to Figure 32 show the logical configuration for modes 0, 1, and 2. Timer 1's mode 3 is a hold-count mode.
	• Timer 1 is controlled by the four high-order bits of TMOD register (see Figure 36) and bits 2, 3, 6 and 7 of TCON register (see Figure 35). TMOD register selects the method of Timer gating (GATE1), Timer or Counter operation (C/T1#) and mode of operation (M11 and M01). TCON register provides Timer 1 control functions: overflow flag (TF1), run control bit (TR1), interrupt flag (IE1) and interrupt type control bit (IT1).
	• Timer 1 can serve as the Baud Rate Generator for the Serial Port. Mode 2 is best suited for this purpose.
	• For normal Timer operation (GATE1 = 0), setting TR1 allows TL1 to be incremented by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control Timer operation.
	• Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag generating an interrupt request.
	• When Timer 0 is in mode 3, it uses Timer 1's overflow flag (TF1) and run control bit (TR1). For this situation, use Timer 1 only for applications that do not require an interrupt (such as a Baud Rate Generator for the Serial Port) and switch Timer 1 in and out of mode 3 to turn it off and on.
	It is important to stop Timer/Counter before changing mode.
Mode 0 (13-bit Timer)	Mode 0 configures Timer 1 as a 13-bit Timer, which is set up as an 8-bit Timer (TH1 reg- ister) with a modulo-32 prescaler implemented with the lower 5 bits of the TL1 register (see Figure 30). The upper 3 bits of TL1 register are ignored. Prescaler overflow incre- ments TH1 register.
Mode 1 (16-bit Timer)	Mode 1 configures Timer 1 as a 16-bit Timer with TH1 and TL1 registers connected in cascade (see Figure 31). The selected input increments TL1 register.
Mode 2 (8-bit Timer with Auto- Reload)	Mode 2 configures Timer 1 as an 8-bit Timer (TL1 register) with automatic reload from TH1 register on overflow (see Figure 32). TL1 overflow sets TF1 flag in TCON register and reloads TL1 with the contents of TH1, which is preset by software. The reload leaves TH1 unchanged.
Mode 3 (Halt)	Placing Timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt Timer 1 when TR1 run control bit is not available i.e. when Timer 0 is in mode 3.
Interrupt	Each Timer handles one interrupt source that is the timer overflow flag TF0 or TF1. This flag is set every time an overflow occurs. Flags are cleared when vectoring to the Timer interrupt routine. Interrupts are enabled by setting ETx bit in IEN0 register. This assumes interrupts are globally enabled by setting EA bit in IEN0 register.

Registers

Table 35. TCON Register

TCON (S:88h) Timer/Counter Control Register

7	6	5	4	3	2	1	0				
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0				
Bit Number	Bit Mnemonic	Description	Description								
7	TF1	Cleared by h	Timer 1 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on Timer/Counter overflow, when Timer 1 register overflows.								
6	TR1	Clear to turn	Timer 1 Run Control Bit Clear to turn off Timer/Counter 1. Set to turn on Timer/Counter 1.								
5	TF0	Cleared by h	Timer 0 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on Timer/Counter overflow, when Timer 0 register overflows.								
4	TR0		off Timer/Countries								
3	IE1		ardware whe		rocessed if ec is detected o		(see IT1).				
2	IT1	Clear to sele	Interrupt 1 Type Control Bit Clear to select low level active (level triggered) for external interrupt 1 (INT1#). Set to select falling edge active (edge triggered) for external interrupt 1.								
1	IE0	Cleared by h	Interrupt 0 Edge Flag Cleared by hardware when interrupt is processed if edge-triggered (see IT0). Set by hardware when external interrupt is detected on INT0# pin.								
0	ITO	Clear to sele	ct low level a	Interrupt 0 Type Control Bit Clear to select low level active (level triggered) for external interrupt 0 (INT0#). Set to select falling edge active (edge triggered) for external interrupt 0.							

Table 36. TMOD Register

TMOD (S:89h) Timer/Counter Mode Control Register

7	6	5	4	3	2	1	0			
GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00			
Bit Number	Bit Mnemonic	Description	Description							
7	GATE1	Clear to enal	Timer 1 Gating Control Bit Clear to enable Timer 1 whenever TR1 bit is set. Set to enable Timer 1 only while INT1# pin is high and TR1 bit is set.							
6	C/T1#	Clear for Tim	Timer 1 Counter/Timer Select Bit Clear for Timer operation: Timer 1 counts the divided-down system clock. Set for Counter operation: Timer 1 counts negative transitions on external pin T1.							
5	M11		mer 1 Mode Select Bits							
4	M01	0 0 Ma 0 1 Ma 1 0 Ma	 0 1 Mode 1: 16-bit Timer/Counter. 1 0 Mode 2: 8-bit auto-reload Timer/Counter (TL1)⁽¹⁾ 							
3	GATE0	Clear to enal		3it henever TR0 b ter 0 only while		high and TRC) bit is set.			
2	C/T0#	Clear for Tim	Timer 0 Counter/Timer Select Bit Clear for Timer operation: Timer 0 counts the divided-down system clock. Set for Counter operation: Timer 0 counts negative transitions on external pin T0.							
1	M10	<u>M10 M00 Op</u> 0 0 Mo								
0	M00	1 0 Mo 1 1 Mo	ode 2: 8-bit au ode 3: TL0 is	uto-reload Tim an 8-bit Timer, g Timer 1's TR	er/Counter (TL 'Counter	,				

1. Reloaded from TH1 at overflow.

2. Reloaded from TH0 at overflow.

Table 37. TH0 Register

TH0 (S:8Ch) Timer 0 High Byte Register

7	6	5	4	3	2	1	0
_	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7:0		High Byte of	f Timer 0.				

Reset Value = 0000 0000b

Table 38. TL0 Register

TL0 (S:8Ah) Timer 0 Low Byte Register

7	6	5	4	3	2	1	0	
-	-							
Bit Number	Bit Mnemonic	Description						
7:0		Low Byte of Timer 0.						

Reset Value = 0000 0000b

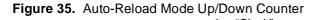
Table 39. TH1 Register

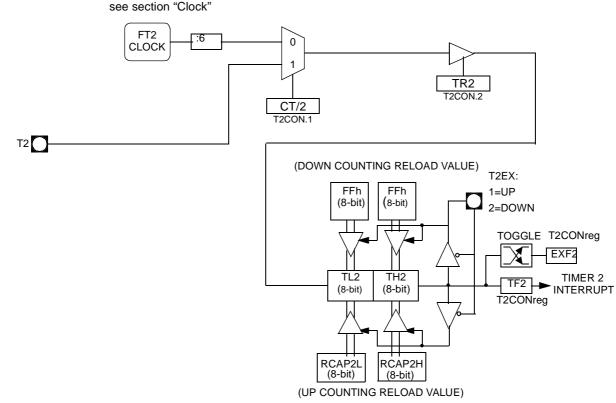
TH1 (S:8Dh) Timer 1 High Byte Register

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	-		
Bit Number	Bit Mnemonic	Description	Description						
7:0		High Byte o	f Timer 1.						

Table 40. TL1 Register

TL1 (S:8Bh) Timer 1 Low Byte Register


7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7:0		Low Byte of	Timer 1.				



Timer 2	The AT89C51CC03 timer 2 is compatible with timer 2 in the 80C52.					
	It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2 that are cascade- connected. It is controlled by T2CON register (See Table) and T2MOD register (See Table 43). Timer 2 operation is similar to Timer 0 and Timer 1. $C/T2$ selects $F_{T2 clock}/6$ (timer operation) or external pin T2 (counter operation) as timer clock. Setting TR2 allows TL2 to be incremented by the selected input.					
	Timer 2 includes the following enhancements:					
	Auto-reload mode (up or down counter)					
	Programmable clock-output					
Auto-Reload Mode	The auto-reload mode configures timer 2 as a 16-bit timer or event counter with auto- matic reload. This feature is controlled by the DCEN bit in T2MOD register (See Table 43). Setting the DCEN bit enables timer 2 to count up or down as shown in Figure 35. In this mode the T2EX pin controls the counting direction.					
	When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.					
	When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the					

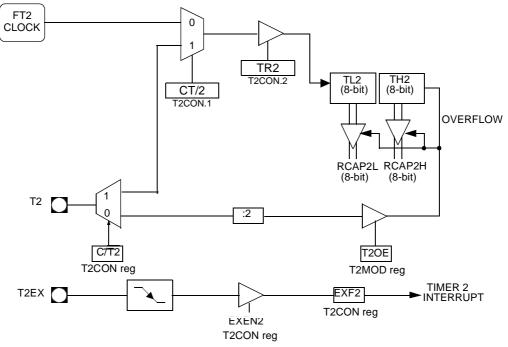
timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

The EXF2 bit toggles when timer 2 overflow or underflow, depending on the direction of the count. EXF2 does not generate an interrupt. This bit can be used to provide 17-bit resolution.

Programmable Clock-Output

In clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 36). The input clock increments TL2 at frequency $F_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency depending on the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

 $Clock - OutFrequency = \frac{FT2clock}{4 \times (65536 - RCAP2H/RCAP2L)}$


For a 16 MHz system clock in x1 mode, timer 2 has a programmable frequency range of 61 Hz ($F_{OSC}/2^{16}$) to 4 MHz ($F_{OSC}/4$). The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or different depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Registers

Table 41. T2CON Register

T2CON (S:C8h) Timer 2 Control Register

7	6	5	4	3	2	1	0					
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#					
Bit Number	Bit Mnemonic	Description	Description									
7	TF2	TF2 is not se Must be clea	Timer 2 Overflow Flag TF2 is not set if RCLK=1 or TCLK = 1. Must be cleared by software. Set by hardware on timer 2 overflow.									
6	EXF2	Set when a c EXEN2=1. Set to cause is enabled.	Set to cause the CPU to vector to timer 2 interrupt routine when timer 2 interrupt									
5	RCLK	Clear to use	Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.									
4	TCLK		timer 1 overfle	ow as transmi v as transmit c		•						
3	EXEN2	Clear to igno Set to cause	a capture or	bit T2EX pin for ti reload when a used to clock ti	negative tran	sition on T2E	X pin is					
2	TR2	Timer 2 Run Clear to turn Set to turn or	off timer 2.									
1	C/T2#	Clear for time		iit nput from inte input from T2		tem: F _{OSC}).						
0	CP/RL2#	If RCLK=1 or timer 2 overfi Clear to auto EXEN2=1.	low. -reload on tim	bit //RL2# is ignor ner 2 overflows transitions or	s or negative	transitions on						

Reset Value = 0000 0000b Bit addressable

Table 42. T2MOD Register

T2MOD (S:C9h) Timer 2 Mode Control Register

7	6	5	4	3	2	1	0				
-	-	-	-	-	-	T2OE	DCEN				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
2	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
1	T2OE	Clear to prog	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.								
0	DCEN	Clear to disa		t up/down cou p/down counte							

Reset Value = XXXX XX00b Not bit addressable

Table 43. TH2 Register

TH2 (S:CDh) Timer 2 High Byte Register

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	
Bit Number	Bit Mnemonic	Description						
7-0		High Byte of	Timer 2.					

Reset Value = 0000 0000b Not bit addressable

Table 44. TL2 Register

TL2 (S:CCh) Timer 2 Low Byte Register

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	
Bit Number	Bit Mnemonic	Description						
7-0		Low Byte of	Timer 2.					

Reset Value = 0000 0000b Not bit addressable

Table 45. RCAP2H Register

RCAP2H (S:CBh) Timer 2 Reload/Capture High Byte Register

7	6	5	4	3	2	1	0			
-	-	· · · · · ·								
Bit Number	Bit Mnemonic	Description	Description							
7-0		High Byte of Timer 2 Reload/Capture.								

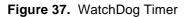
Reset Value = 0000 0000b Not bit addressable

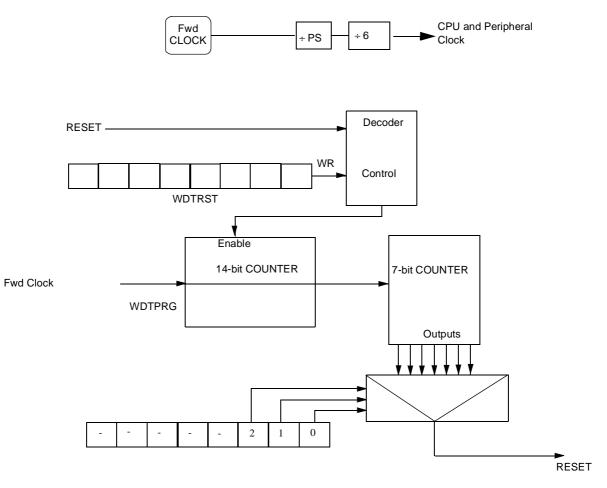
Table 46. RCAP2L Register

RCAP2L (S:CAн) TIMER 2 Reload/Capture Low Byte Register

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	-		
Bit Number	Bit Mnemonic	Description	Description						
7-0		Low Byte of Timer 2 Reload/Capture.							

Reset Value = 0000 0000b Not bit addressable


WatchDog Timer


AT89C51CC03 contains a powerful programmable hardware WatchDog Timer (WDT) that automatically resets the chip if it software fails to reset the WDT before the selected time interval has elapsed. It permits large Time-Out ranking from 16ms to 2s @Fosc = 12MHz in X1 mode.

This WDT consists of a 14-bit counter plus a 7-bit programmable counter, a WatchDog Timer reset register (WDTRST) and a WatchDog Timer programming (WDTPRG) register. When exiting reset, the WDT is -by default- disable.

To enable the WDT, the user has to write the sequence 1EH and E1H into WDTRST register no instruction in between. When the WatchDog Timer is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is $96xT_{OSC}$, where $T_{OSC}=1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset

Note: When the WatchDog is enable it is impossible to change its period.

WatchDog Programming

The three lower bits (S0, S1, S2) located into WDTPRG register permit to program the WDT duration.

 Table 47.
 Machine Cycle Count

S2	S1	S0	Machine Cycle Count
0	0	0	2 ¹⁴ - 1
0	0	1	2 ¹⁵ - 1
0	1	0	2 ¹⁶ - 1
0	1	1	2 ¹⁷ - 1
1	0	0	2 ¹⁸ - 1
1	0	1	2 ¹⁹ - 1
1	1	0	2 ²⁰ - 1
1	1	1	2 ²¹ - 1

To compute WD Time-Out, the following formula is applied:

$$FTime - Out = \frac{F_{wd}}{12 \times ((2^{14} \times 2^{Svalue}) - 1))}$$

Note: Svalue represents the decimal value of (S2 S1 S0)

The following table outlines the time-out value for $\mathsf{Fosc}_{\mathsf{XTAL}}$ = 12 MHz in X1 mode

S2	S1	S0	Fosc = 12 MHz	Fosc = 16 MHz	Fosc = 20 MHz	
0	0	0	16.38 ms	12.28 ms	9.82 ms	
0	0	1	32.77 ms	24.57 ms	19.66 ms	
0	1	0	65.54 ms	49.14 ms	39.32 ms	
0	1	1	131.07 ms	98.28 ms	78.64 ms	
1	0	0	262.14 ms	196.56 ms	157.28 ms	
1	0	1	524.29 ms	393.12 ms	314.56 ms	
1	1	0	1.05 s	1.05 s 786.24 ms		
1	1	1	2.10 s	1.57 s	1.25 ms	

Table 48. Time-Out Computation

WatchDog Timer During Power-down Mode and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-down mode, the user does not need to service the WDT. There are 2 methods of exiting Power-down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, the WatchDog is disabled. Exiting Power-down with an interrupt is significantly different. The interrupt shall be held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down.

To ensure that the WDT does not overflow within a few states of exiting powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting AT89C51CC03 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

Register

Table 49. WDTPRG Register

WDTPRG (S:A7h) WatchDog Timer Duration Programming Register

7	6	5	4	3	2	1	0				
-	-	-	-	-	S2	S1	S0				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.					
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.					
2	S2	-	imer Duratio unction with b	n selection b it 1 and bit 0.	it 2						
1	S1	-	WatchDog Timer Duration selection bit 1 Work in conjunction with bit 2 and bit 0.								
0	SO			n selection b it 1 and bit 2.	it O						

Reset Value = XXXX X000b

Table 50. WDTRST Register

WDTRST (S:A6h Write only) WatchDog Timer Enable Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7	-	WatchDog C	ontrol Value				

Reset Value = 1111 1111b

Note: The WDRST register is used to reset/enable the WDT by writing 1EH then E1H in sequence without instruction between these two sequences.

AT89C51CC03

CAN Controller	The CAN Controller provides all the features required to implement the serial communi- cation protocol CAN as defined by BOSCH GmbH. The CAN specification as referred to by ISO/11898 (2.0A and 2.0B) for high speed and ISO/11519-2 for low speed. The CAN Controller is able to handle all types of frames (Data, Remote, Error and Overload) and achieves a bitrate of 1-Mbit/sec at 8 MHz ¹ Crystal frequency in X2 mode. Note: 1. At BRP = 1 sampling point will be fixed.
CAN Controller Description	 The CAN Controller accesses are made through SFR. Several operations are possible by SFR: arithmetic and logic operations, transfers and program control (SFR is accessible by direct addressing). 15 independent message objects are implemented, a pagination system manages their accesses.
	Any message object can be programmed in a reception buffer block (even non-consec- utive buffers). For the reception of defined messages one or several receiver message objects can be masked without participating in the buffer feature. An IT is generated when the buffer is full. The frames following the buffer-full interrupt will not be taken into account until at least one of the buffer message objects is re-enabled in reception. Higher priority of a message object for reception or transmission is given to the lower message object number.
	The programmable 16-bit Timer (CANTIMER) is used to stamp each received and sent

The programmable 16-bit Timer (CANTIMER) is used to stamp each received and sent message in the CANSTMP register. This timer starts counting as soon as the CAN controller is enabled by the ENA bit in the CANGCON register.

The Time Trigger Communication (TTC) protocol is supported by the AT89C51CC03.

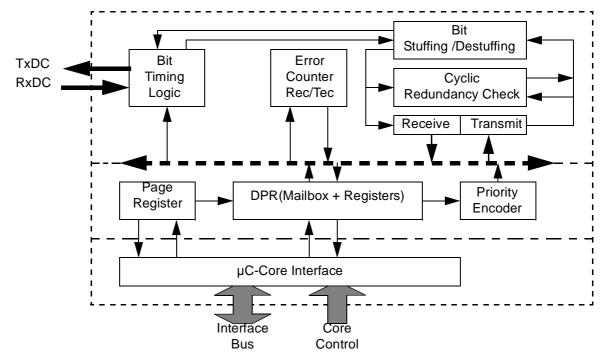
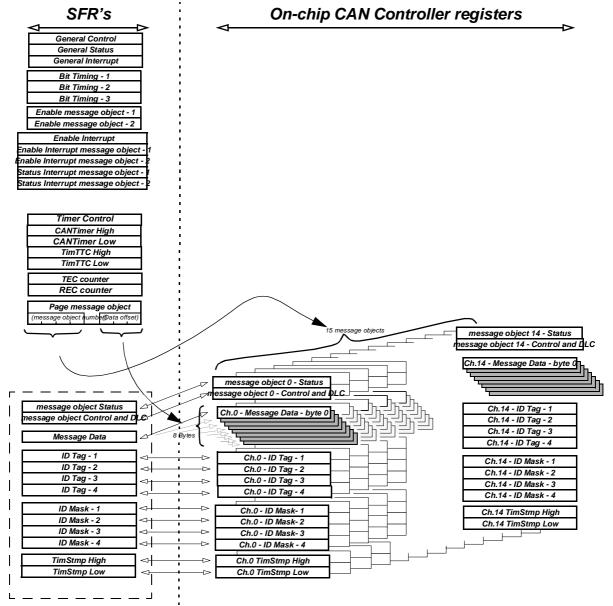


Figure 38. CAN Controller Block Diagram



CAN Controller Mailbox and Registers Organization

The pagination allows management of the 321 registers including 300(15x20) Bytes of mailbox via 34 SFR's.

All actions on the message object window SFRs apply to the corresponding message object registers pointed by the message object number find in the Page message object register (CANPAGE) as illustrate in Figure 39.

message object Window SFRs

Working on Message Objects The Page message object register (CANPAGE) is used to select one of the 15 message objects. Then, message object Control (CANCONCH) and message object Status (CANSTCH) are available for this selected message object number in the corresponding SFRs. A single register (CANMSG) is used for the message. The mailbox pointer is managed by the Page message object register with an auto-incrementation at the end of each access. The range of this counter is 8.

Note that the maibox is a pure RAM, dedicated to one message object, without overlap. In most cases, it is not necessary to transfer the received message into the standard memory. The message to be transmitted can be built directly in the maibox. Most calculations or tests can be executed in the mailbox area which provide quicker access.

CAN ControllerIn order to enable the CAN Controller correctly the following registers have to be
initialized:Managementinitialized:

- General Control (CANGCON),
- Bit Timing (CANBT 1, 2 and 3),
- And for each page of 15 message objects
 - message object Control (CANCONCH),
 - message object Status (CANSTCH).

During operation, the CAN Enable message object registers 1 and 2 (CANEN 1 and 2) gives a fast overview of the message objects availability.

The CAN messages can be handled by interrupt or polling modes.

A message object can be configured as follows:

- Transmit message object,
- Receive message object,
- Receive buffer message object.
- Disable

This configuration is made in the CONCH1:2 field of the CANCONCH register (see Table 51).

When a message object is configured, the corresponding ENCH bit of CANEN 1 and 2 register is set.

Table 51.	Configuration	for CONCH1:2
-----------	---------------	--------------

CONCH 1	CONCH 2	Type of Message Object
0	0	Disable
0	1	Transmitter
1	0	Receiver
1	1	Receiver buffer

When a Transmitter or Receiver action of a message object is completed, the corresponding ENCH bit of the CANEN 1 and 2 register is cleared. In order to re-enable the message object, it is necessary to re-write the configuration in CANCONCH register.

Non-consecutive message objects can be used for all three types of message objects (Transmitter, Receiver and Receiver buffer),

Buffer Mode

Any message object can be used to define one buffer, including non-consecutive message objects, and with no limitation in number of message objects used up to 15.

Each message object of the buffer must be initialized CONCH2 = 1 and CONCH1 = 1;

	Figure	40.	Buffer	mode
--	--------	-----	--------	------

•		
message object 14		
message object 13		
message object 12		Block buffer
message object 11		
message object 10		buffer 7
message object 9		buffer 6
message object 8		buffer 5
message object 7		buffer 4
message object 6		buffer 3
message object 5		buffer 2
message object 4		buffer 1
message object 3		buffer 0
message object 2		
message object 1	1	
message object 0		

The same acceptance filter must be defined for each message objects of the buffer. When there is no mask on the identifier or the IDE, all messages are accepted.

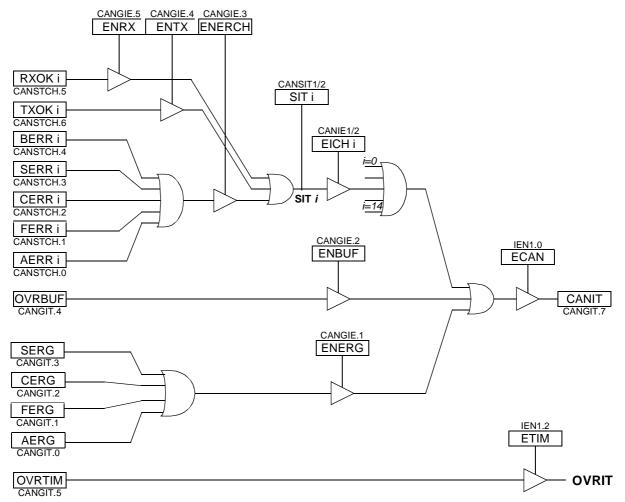
A received frame will always be stored in the lowest free message object.

When the flag Rxok is set on one of the buffer message objects, this message object can then be read by the application. This flag must then be cleared by the software and the message object re-enabled in buffer reception in order to free the message object.

The OVRBUF flag in the CANGIT register is set when the buffer is full. This flag can generate an interrupt.

The frames following the buffer-full interrupt will not stored and no status will be overwritten in the CANSTCH registers involved in the buffer until at least one of the buffer message objects is re-enabled in reception.


This flag must be cleared by the software in order to acknowledge the interrupt.


AT89C51CC03

IT CAN Management

The different interrupts are:

- Transmission interrupt,
- Reception interrupt,
- Interrupt on error (bit error, stuff error, crc error, form error, acknowledge error),
- Interrupt when Buffer receive is full,
- Interrupt on overrun of CAN Timer.

To enable a transmission interrupt:

- Enable General CAN IT in the interrupt system register,
- Enable interrupt by message object, EICHi,
- Enable transmission interrupt, ENTX.

To enable a reception interrupt:

- Enable General CAN IT in the interrupt system register,
- Enable interrupt by message object, EICHi,

• Enable reception interrupt, ENRX.

To enable an interrupt on message object error:

- Enable General CAN IT in the interrupt system register,
- Enable interrupt by message object, EICHi,
- Enable interrupt on error, ENERCH.

To enable an interrupt on general error:

- Enable General CAN IT in the interrupt system register,
- Enable interrupt on error, ENERG.

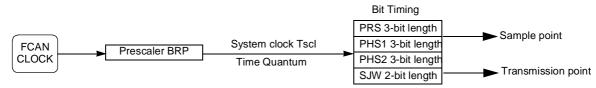
To enable an interrupt on Buffer-full condition:

- Enable General CAN IT in the interrupt system register,
- Enable interrupt on Buffer full, ENBUF.

To enable an interrupt when Timer overruns:

• Enable Overrun IT in the interrupt system register.

When an interrupt occurs, the corresponding message object bit is set in the SIT register.

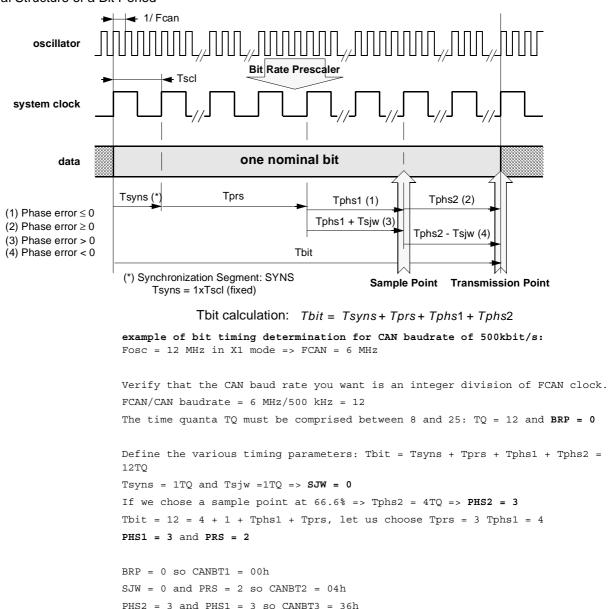

To acknowledge an interrupt, the corresponding CANSTCH bits (RXOK, TXOK,...) or CANGIT bits (OVRTIM, OVRBUF,...), must be cleared by the software application.

When the CAN node is in transmission and detects a Form Error in its frame, a bit Error will also be raised. Consequently, two consecutive interrupts can occur, both due to the same error.

When a message object error occurs and is set in CANSTCH register, no general error are set in CANGIE register.

Bit Timing and Baud Rate

Figure 42. Sample And Transmission Point


The baud rate selection is made by Tbit calculation:

Tbit = Tsyns + Tprs + Tphs1 + Tphs2

- 1. Tsyns = Tscl = (BRP[5..0] + 1)/Fcan = 1TQ.
- 2. Tprs = (1 to 8) * Tscl = (PRS[2..0]+ 1) * Tscl
- 3. Tphs1 = (1 to 8) * Tscl = (PHS1[2..0]+ 1) * Tscl
- 4. Tphs2 = (1 to 8) * Tscl = (PHS2[2..0]+ 1) * Tscl
- 5. Tsjw = (1 to 4) * Tscl = (SJW[1..0]+ 1) * Tscl

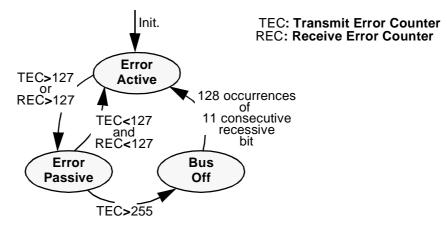
The total number of Tscl (Time Quanta) in a bit time must be comprised between 8 to 25.

Fault Confinement

With respect to fault confinement, a unit may be in one of the three following status:

- error active
- error passive
- bus off

An error active unit takes part in bus communication and can send an active error frame when the CAN macro detects an error.


An error passive unit cannot send an active error frame. It takes part in bus communication, but when an error is detected, a passive error frame is sent. Also, after a transmission, an error passive unit will wait before initiating further transmission.

A bus off unit is not allowed to have any influence on the bus.

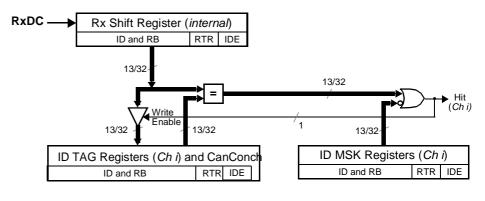
For fault confinement, two error counters (TEC and REC) are implemented.

See CAN Specification for details on Fault confinement.

Figure 44. Line Error Mode

Acceptance Filter

Upon a reception hit (i.e., a good comparison between the ID+RTR+RB+IDE received and an ID+RTR+RB+IDE specified while taking the comparison mask into account) the ID+RTR+RB+IDE received are written over the ID TAG Registers.


ID => IDT0-29

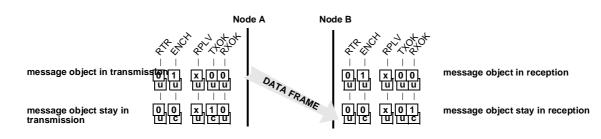
RTR => RTRTAG

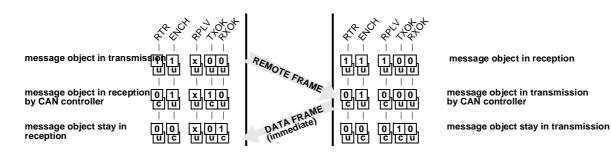
RB => RB0-1TAG

IDE => IDE in CANCONCH register

Figure 45. Acceptance filter block diagram

example: To accept only ID = 318h in part A. ID MSK = 111 1111 1111 b ID TAG = 011 0001 1000 b




Data and Remote frame

Description of the different steps for:

Data Frame

Remote Frame, With Automatic Reply,

Remote Frame

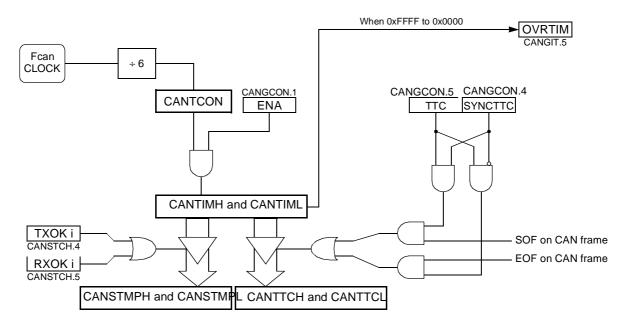
Time Trigger Communication (TTC) and Message Stamping

The AT89C51CC03 has a programmable 16-bit Timer (CANTIMH and CANTIML) for message stamp and TTC.

This CAN Timer starts after the CAN controller is enabled by the ENA bit in the CANG-CON register.

Two modes in the timer are implemented:

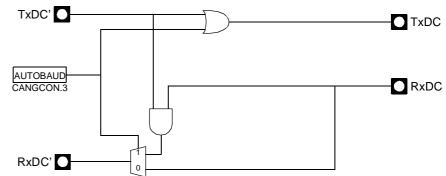
- Time Trigger Communication:
 - Capture of this timer value in the CANTTCH and CANTTCL registers on Start Of Frame (SOF) or End Of Frame (EOF), depending on the SYNCTTC bit in the CANGCON register, when the network is configured in TTC by the TTC bit in the CANGCON register.


Note: In this mode, CAN only sends the frame once, even if an error occurs.

- Message Stamping
 - Capture of this timer value in the CANSTMPH and CANSTMPL registers of the message object which received or sent the frame.
 - All messages can be stamps.
 - The stamping of a received frame occurs when the RxOk flag is set.
 - The stamping of a sent frame occurs when the TxOk flag is set.

The CAN Timer works in a roll-over from FFFFh to 0000h which serves as a time base.

When the timer roll-over from FFFFh to 0000h, an interrupt is generated if the ETIM bit in the interrupt enable register IEN1 is set.


CAN Autobaud and Listening Mode

To activate the Autobaud feature, the AUTOBAUD bit in the CANGCON register must be set. In this mode, the CAN controller is only listening to the line without acknowledging the received messages. It cannot send any message. The error flags are updated. The bit timing can be adjusted until no error occurs (good configuration find).

In this mode, the error counters are frozen.

To go back to the standard mode, the AUTOBAUD bit must be cleared.

Figure 47. Autobaud Mode

Routines Examples

1. Init of CAN macro

```
// Reset the CAN macro
 CANGCON = 01h;
// Disable CAN interrupts
ECAN
        = 0;
ETIM
        = 0;
// Init the Mailbox
 for num_page =0; num_page <15; num_page++</pre>
{
    CANPAGE = num_channel << 4;</pre>
    CANCONCH = 00h
    CANSTCH = 00h;
    CANIDT1 = 00h;
    CANIDT2 = 00h;
    CANIDT3 = 00h;
    CANIDT4 = 00h;
    CANIDM1 = 00h;
    CANIDM2 = 00h;
    CANIDM3 = 00h;
    CANIDM4 = 00h;
    for num_data =0; num_data <8; num_data++)</pre>
      {
      CANMSG = 00h;
      }
}
// Configure the bit timing
 CANBT1 = xxh
 CANBT2 = xxh
 CANBT3 = xxh
```

AT89C51CC03

```
// Enable the CAN macro
CANGCON = 02h
```

2. Configure message object 3 in reception to receive only standard (11-bit identifier) message 100h

```
// Select the message object 3 \,
    CANPAGE = 30h
    // Enable the interrupt on this message object
    CANIE2 = 08h
    // Clear the status and control register
    CANSTCH = 00h
    CANCONCH = 00h
    // Init the acceptance filter to accept only message 100h in standard mode
    CANIDT1 = 20h
    CANIDT2 = 00h
    CANIDT3 = 00h
    CANIDT4 = 00h
    CANIDM1 = FFh
    CANIDM2 = FFh
    CANIDM3 = FFh
    CANIDM4 = FFh
    // Enable channel in reception
    CANCONCH = 88h // enable reception
Note: To enable the CAN interrupt in reception:
   EA = 1
   ECAN = 1
    CANGIE = 20h
Send a message on the message object 12
   // Select the message object 12
    CANPAGE = C0h
    // Enable the interrupt on this message object
    CANIE1 = 01h
    // Clear the Status register
    CANSTCH = 00h;
    // load the identifier to send (ex: 555h)
    CANIDT1 = AAh;
    CANIDT2 = A0h;
    // load data to send
    CANMSG = 00h
    CANMSG = 01h
    CANMSG = 02h
    CANMSG = 03h
    CANMSG = 04h
    CANMSG = 05h
    CANMSG = 06h
    CANMSG = 07h
    // configure the control register
    CANCONCH = 18h
```


4. Interrupt routine

 $//\ {\rm Save}$ the current CANPAGE

 $\ensuremath{{\prime}}\xspace$ // Find the first message object which generate an interrupt in CANSIT1 and CANSIT2

 $\ensuremath{//}$ Select the corresponding message object

 $\ensuremath{{\prime}}\xspace$ // Analyse the CANSTCH register to identify which kind of interrupt is generated

// Manage the interrupt

// Clear the status register CANSTCH = 00h;

// if it is not a channel interrupt but a general interrupt

// Manage the general interrupt and clear CANGIT register

 $//\ {\rm restore}$ the old CANPAGE

CAN SFR's

Table 52. CAN SFR's With Reset Values

	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	IPL1 xxxx x000	CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000	CCAP2H 0000 0000	CCAP3H 0000 0000	CCAP4H 0000 0000		FFh
F0h	B 0000 0000		ADCLK xx00 x000	ADCON 0000 0000	ADDL xxxx xx00	ADDH 0000 0000	ADCF 0000 0000	IPH1 xxxx x000	F7h
E8h	IEN1 xxxx x000	CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000	CCAP2L 0000 0000	CCAP3L 0000 0000	CCAP4L 0000 0000		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 00xx xx00	CMOD 00xx x000	CCAPM0 x000 0000	CCAPM1 x000 0000	CCAPM2 x000 0000	CCAPM3 x000 0000	CCAPM4 x000 0000		DFh
D0h	PSW 0000 0000	FCON 0000 0000	EECON xxxx xx00						D7h
C8h	T2CON 0000 0000	T2MOD xxxx xx00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000	CANEN1 xx00 0000	CANEN2 0000 0000	CFh
C0h	P4 xxxx xx11	CANGIE 0000 0000	CANIE1 xx00 0000	CANIE2 0000 0000	CANIDM1 xxxx xxxx	CANIDM2 xxxx xxxx	CANIDM3 xxxx xxxx	CANIDM4 xxxx xxxx	C7h
B8h	IPL0 x000 0000	SADEN 0000 0000	CANSIT1 0x00 0000	CANSIT2 0000 0000	CANIDT1 xxxx xxxx	CANIDT2 xxxx xxxx	CANIDT3 xxxx xxxx	CANIDT4 xxxx xxxx	BFh
B0h	P3 1111 1111	CANPAGE 0000 0000	CANSTCH xxxx xxxx	CANCONCH xxxx xxxx	CANBT1 xxxx xxxx	CANBT2 xxxx xxxx	CANBT3 xxxx xxxx	IPH0 x000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000	CANGSTA 0000 0000	CANGCON 0000 x000	CANTIML 0000 0000	CANTIMH 0000 0000	CANSTMPL 0000 0000	CANSTMPH 0000 0000	AFh
A0h	P2 1111 1111	CANTCON 0000 0000	AUXR1 0000 0000	CANMSG xxxx xxxx	CANTTCL 0000 0000	CANTTCH 0000 0000	WDTRST 1111 1111	WDTPRG xxxx x000	A7h
98h	SCON 0000 0000	SBUF 0000 0000		CANGIT 0x00 0000	CANTEC 0000 0000	CANREC 0000 0000			9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR 0000 1000	CKCON 0000 0000	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 0000 0000	87h
	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Registers

Table 53. CANGCON Register

CANGCON (S:ABh) CAN General Control Register

7	6	5	4	3	2	1	0		
ABRQ	OVRQ	TTC	SYNCTTC	AUTOBAUD	TEST	ENA	GRES		
Bit Number	Bit Mnemonic	Descripti	on						
7	ABRQ	Not an au and DLC r communic	Abort Request Not an auto-resetable bit. A reset of the ENCH bit (message object control and DLC register) is done for each message object. The pending transmission communications are immediately aborted but the on-going communication will be terminated normally, setting the appropriate status flags, TXOK or RXOK.						
6	OVRQ	Auto-rese Set to ser	Overload frame request (initiator) Auto-resetable bit. Set to send an overload frame after the next received message. Cleared by the hardware at the beginning of transmission of the overload						
5	ттс	set to sele	in Timer Trigg ect node in TT sable TTC fea	-	ation				
4	SYNCTTC	When this Frame. When this	Synchronization of TTC When this bit is set the TTC timer is caught on the last bit of the End Of Frame. When this bit is clear the TTC timer is caught on the Start Of Frame. This bit is only used in the TTC mode.						
3	AUTOBAUD		UD ve listening m isable listening						
2	TEST	Test mode use.	e. The test mo	de is intended f	or factory te	sting and not	for customer		
1	ENA/STB	When this When this the CAN of message In the star receiver is During the	Enable/Standby CAN Controller When this bit is set, it enables the CAN controller and its input clock. When this bit is clear, the on-going communication is terminated normally and the CAN controller state of the machine is frozen (the ENCH bit of each message object does not change). In the standby mode, the transmitter constantly provides a recessive level; the receiver is not activated and the input clock is stopped in the CAN controller. During the disable mode, the registers and the mailbox remain accessible. Note that two clock periods are needed to start the CAN controller state of the machine.						
0	GRES	Auto-rese		re reset) reset command oller. After a res					

Reset Value = 0000 0x00b

Table 54. CANGSTA Register

CANGSTA (S:AAh) CAN General Status Register

7	6	5	4	3	2	1	0	
-	OVFG	-	TBSY	RBSY	ENFG	BOFF	ERRP	
Bit Number	Bit Mnemonic	c Description	on					
7	-	Reserved The value		nis bit is indete	rminate. Do n	ot set this bit.		
6	OVFG	This statu is sent.		1) the hardware rate an interru	Ū	produced ove	erload frame	
5	-	Reserved The value		nis bit is indete	rminate. Do n	ot set this bit.		
4	TBSY	This statu generates bit is also	a frame (rem active during	the hardware ote, data, ove an InterFrame rate an interru	rload or error f Spacing if a f	rame) or an a	ck field. This	
3	RBSY	monitors a	s bit is set by a frame.	the hardware rate an interru	-	CAN receive	r acquires or	
2	ENFG	Because a bit gives the	Enable On-chip CAN Controller Flag ⁽¹⁾ Because an enable/disable command is not effective immediately, this status bit gives the true state of a chosen mode. This flag does not generate an interrupt.					
1	BOFF		Bus Off Mode ⁽¹⁾ see Figure 44					
0	ERRP	Error Pas see Figur	sive Mode ⁽¹⁾ e 44					

Note: 1. These fields are Read Only.

Reset Value = x0x0 0000b

Table 55. CANGIT Register

CANGIT (S:9Bh) CAN General Interrupt

7	6	5	4	3	2	1	0	
CANIT	-	OVRTIM	OVRBUF	SERG	CERG	FERG	AERG	
Bit Number	Bit Mnemonic	Description	on					
7	CANIT	This statu interrupt c	ontroller.	(1) age of all the C se of the pollir		r interrupts sei	nt to the	
6	-	Reserved The value		is bit is indete	rminate. Do n	ot set this bit.		
5	OVRTIM	This statu If the bit E	Overrun CAN Timer his status bit is set when the CAN timer switches 0xFFFF to 0x0000. the bit ETIM in the IE1 register is set, an interrupt is generated. Clear this bit in order to reset the interrupt.					
4	OVRBUF	0 - no inte 1 - IT turn This bit is Bit resetal	Dverrun BUFFER) - no interrupt. 1 - IT turned on This bit is set when the buffer is full. Bit resetable by user. see Figure 41.					
3	SERG	Detection		five consecuti an interrupt. re		•	ty.	
2	CERG	The receiv from the s If this chea set.	CRC Error General The receiver performs a CRC check on each destuffed received message from the start of frame up to the data field. If this checking does not match with the destuffed CRC field, a CRC error is					
1	FERG	The form of following to CRC deline acknowled end_of_fra	Form Error General The form error results from one or more violations of the fixed form in the following bit fields: CRC delimiter acknowledgment delimiter end_of_frame This flag can generate an interrupt. resetable by user.					
0	AERG	No detecti		or General aninant bit in the an interrupt. re	0			

Note: 1. These fields are Read Only.

Reset Value = 0x00 0000b

Table 56. CANTEC Register

CANTEC (S:9Ch Read Only) CAN Transmit Error Counter

7	6	5	4	3	2	1	0
TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
Bit Number	Bit Mnemonic	Descripti	on				
7-0	TEC7:0	Transmit see Figur	Error Counte e 44	er			

Reset Value = 00h

Table 57. CANREC Register

CANREC (S:9Dh Read Only) CAN Reception Error Counter

7	6	5	4	3	2	1	0
REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
Bit Number	Bit Mnemonic	Descripti	on				
7-0	REC7:0	Reception see Figur	n Error Coun e 44	ter			

Reset Value = 00h

Table 58. CANGIE Register

CANGIE (S:C1h) CAN General Interrupt Enable

7	6	5	4	3	2	1	0				
-	-	ENRX	ENTX	ENERCH	ENBUF	ENERG	-				
Bit Number	Bit Mnemonio	c Description	on								
7-6	-	Reserved The value	eserved he values read from these bits are indeterminate. Do not set these bits.								
5	ENRX	Enable R 0 - Disable 1 - Enable									
4	ENTX		Enable Transmit Interrupt) - Disable - Enable								
3	ENERCH	Enable M 0 - Disable 1 - Enable	9	ct Error Interr	upt						
2	ENBUF	Enable B 0 - Disable 1 - Enable	-								
1	ENERG	Enable G 0 - Disable 1 - Enable	-	Interrupt							
0	-	Reserved The value		is bit is indeteri	minate. Do no	ot set this bit.					

Note: See Figure 41

Reset Value = xx00 000xb

Table 59. CANEN1 Register

CANEN1 (S:CEh Read Only) CAN Enable Message Object Registers 1

7	6	5	4	3	2	1	0				
-	ENCH14	ENCH13	NCH13 ENCH12 ENCH11 ENCH10 ENCH9 ENCH8								
Bit Number	Bit Mnemonic	Descriptio	Description								
7	-	Reserved The values	eserved he values read from this bit is indeterminate. Do not set this bit.								
6-0	ENCH14:8	0 - messa emission o 1 - messa This bit is	Enable Message Object 0 - message object is disabled => the message object is free for a new emission or reception. 1 - message object is enabled. This bit is resetable by re-writing the CANCONCH of the corresponding message object.								

Reset Value = x000 0000b

Table 60. CANEN2 Register

CANEN2 (S:CFh Read Only) CAN Enable Message Object Registers 2

7	6	5	4	3	2	1	0
ENCH7	ENCH6	ENCH5	ENCH4	ENCH3	ENCH2	ENCH1	ENCH0
Bit Number	Bit Mnemonic	Description	on				
7-0	ENCH7:0	0 - messa emission o 1 - messa	or reception. ge object is en resetable by r	sabled => the	ζ,		

Reset Value = 0000 0000b

Table 61. CANSIT1 Register

CANSIT1 (S:BAh) CAN Status Interrupt Message Object Registers 1

7	6	5	4	3	2	1	0			
-	SIT14	SIT13	SIT13 SIT12 SIT11 SIT10 SIT9 SIT8							
Bit Number	Bit Mnemonie	Description	Description							
7	-	Reserved The value	Reserved The values read from this bit is indeterminate. Do not set this bit.							
6-0	SIT14:8	0 - no inte 1 - IT turn SIT14:8 =	Status of Interrupt by Message Object ⁽¹⁾ 0 - no interrupt. 1 - IT turned on. Reset when interrupt condition is cleared by user. SIT14:8 = 0b 0000 1001 -> IT's on message objects 11 and 8. see Figure 41.							

Note: 1. This field is Read Only

Reset Value = x000 0000b

Table 62. CANSIT2 Register

CANSIT2 (S:BBh Read Only)

CAN Status Interrupt Message Object Registers 2

7	6	5	4	3	2	1	0			
SIT7	SIT6	SIT5	SIT4	SIT3	SIT2	SIT1	SIT0			
Bit Number	Bit Mnemonic	Descriptio	Description							
7-0	SIT7:0	0 - no inte 1 - IT turne	rrupt. ed on. Reset bb 0000 1001	•	iect t condition is c ssage objects		er.			

Reset Value = $0000\ 0000b$

Table 63. CANIE1 Register

CANIE1 (S:C2h) CAN Enable Interrupt Message Object Registers 1

7	6	5	4	3	2	1	0			
-	IECH14	IECH13	IECH12	IECH11	IECH10	IECH9	IECH8			
Bit Number	Bit Mnemonic	Descripti	Description							
7	-	Reserved The value	Reserved The values read from this bit is indeterminate. Do not set this bit.							
6-0	IECH14:8	0 - disable 1 - enable IECH14:8	Enable interrupt by Message Object 0 - disable IT. 1 - enable IT. IECH14:8 = 0b 0000 1100 -> Enable IT's of message objects 11 and 10. see Figure 41.							

Reset Value = x000 0000b

Table 64. CANIE2 Register

CANIE2 (S:C3h) CAN Enable Interrupt Message Object Registers 2

7	6	5	4	3	2	1	0
IECH 7	IECH 6	IECH 5	IECH 4	IECH 3	IECH 2	IECH 1	IECH 0
Bit Number	Bit Mnemoni	c Descriptio	on				
7-0	IECH7:0	0 - disable 1 - enable	e IT. IT.	essage Objec 0 -> Enable IT		e objects 3 and	d 2.

Reset Value = 0000 0000b

Table 65. CANBT1 Register

CANBT1 (S:B4h) CAN Bit Timing Registers 1

7	6	5	4	3	2	1	0				
-	BRP 5	BRP 4	BRP 3	BRP 2	BRP 1	BRP 0	-				
Bit Number	Bit Mnemonic	Descriptio	Description								
7	-	Reserved The value	e value read from this bit is indeterminate. Do not set this bit.								
6-1	BRP5:0	The period	Baud rate prescaler The period of the CAN controller system clock Tscl is programmable and determines the individual bit timing.								
				Tscl =	RP[50] + 1 can						
0	-	Reserved The value		s bit is indeteri	minate. Do no	t set this bit.					

Note: The CAN controller bit timing registers must be accessed only if the CAN controller is disabled with the ENA bit of the CANGCON register set to 0. See Figure 43.

Table 66. CANBT2 Register

CANBT2 (S:B5h) CAN Bit Timing Registers 2

7	6	5	4	3	2	1	0				
-	SJW 1	SJW 0	-	PRS 2	PRS 1	PRS 0	-				
Bit Number	Bit Mnemoni	c Descriptie	on								
7	-	Reserved The value	eserved ne value read from this bit is indeterminate. Do not set this bit.								
6-5	SJW1:0	To compe controllers the curren The synch	Re-synchronization Jump Width to compensate for phase shifts between clock oscillators of different bus ontrollers, the controller must re-synchronize on any relevant signal edge of the current transmission. The synchronization jump width defines the maximum number of clock cycles. The bit period may be shortened or lengthened by a re-synchronization. Tsjw = Tscl x (SJW [10] +1)								
4	-	Reserved The value		s bit is indeter	minate. Do no	t set this bit.					
3-1	PRS2:0	This part of within the	Programming Time Segment This part of the bit time is used to compensate for the physical delay times within the network. It is twice the sum of the signal propagation time on the bus line, the input comparator delay and the output driver delay. Tprs = Tscl x (PRS[20] + 1)								
0	-	Reserved The value		s bit is indeter	minate. Do no	t set this bit.					

Note: The CAN controller bit timing registers must be accessed only if the CAN controller is disabled with the ENA bit of the CANGCON register set to 0. See Figure 43.

Table 67. CANBT3 Register

CANBT3 (S:B6h) CAN Bit Timing Registers 3

7	6	5	4	3	2	1	0				
-	PHS2 2	PHS2 1	HS2 1 PHS2 0 PHS1 2 PHS1 1 PHS1 0 SMP								
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value	eserved ne value read from this bit is indeterminate. Do not set this bit.								
6-4	PHS2 2:0	This phas	Phase Segment 2 This phase is used to compensate for phase edge errors. This segment can e shortened by the re-synchronization jump width. Tphs2 = Tscl x (PHS2[20] + 1)								
3-1	PHS1 2:0	This phas	Phase Segment 1 This phase is used to compensate for phase edge errors. This segment can be lengthened by the re-synchronization jump width. Tphs1 = Tscl x (PHS1[20] + 1)								
0	SMP	1 - three ti over a dis	at the sample mes, the three	efold sampling		he sample poi It corresponds					

Note: The CAN controller bit timing registers must be accessed only if the CAN controller is disabled with the ENA bit of the CANGCON register set to 0. See Figure 43.

Table 68. CANPAGE Register

CANPAGE (S:B1h) CAN Message Object Page Register

7	6	5	4	3	2	1	0				
CHNB 3	CHNB 2	CHNB 1	HNB 1 CHNB 0 AINC INDX2 INDX1 INDX0								
Bit Number	Bit Mnemonic	Descriptio	Description								
7-4	CHNB3:0		Selection of Message Object Number The available numbers are: 0 to 14 (see Figure 39).								
3	AINC	0 - auto-in	Auto Increment of the Index (active low) 0 - auto-increment of the index (default value). 1 - non-auto-increment of the index.								
2-0	INDX2:0	Index Byte locat	on of the data	field for the d	defined messa	ge object (se	e Figure 39).				

Reset Value = 0000 0000b

Table 69. CANCONCH Register

CANCONCH (S:B3h)

CAN Message Object Control and DLC Register

7	6	5	4	3	2	1	0
CONCH 1	CONCH 0	RPLV	IDE	DLC 3	DLC 2	DLC 1	DLC 0

Bit	· · ·				
Number	Bit Mnemonic	Description			
7-6	CONCH1:0	Configuration of Message Object CONCH1 CONCH0 0 0: disable 0 1: Launch transmission 1 0: Enable Reception 1 1: Enable Reception Buffer Note: The user must re-write the configuration to enable the corresponding bit in the CANEN1:2 registers.			
5	RPLV	Reply Valid Used in the automatic reply mode after receiving a remote frame 0 - reply not ready. 1 - reply ready and valid.			
4	IDE	Identifier Extension 0 - CAN standard rev 2.0 A (ident = 11 bits). 1 - CAN standard rev 2.0 B (ident = 29 bits).			
3-0	DLC3:0	Data Length Code Number of Bytes in the data field of the message. The range of DLC is from 0 up to 8. This value is updated when a frame is received (data or remote frame). If the expected DLC differs from the incoming DLC, a warning appears in the CANSTCH register.			

Table 70. CANSTCH Register

CANSTCH (S:B2h) CAN Message Object Status Register

7	6	5	4	3	2	1	0
DLCW	ТХОК	RXOK	BERR	SERR	CERR	FERR	AERR
Bit Number	Bit Mnemonic	Descripti	on				
7	DLCW	The incom	Data Length Code Warning The incoming message does not have the DLC expected. Whatever the fra type, the DLC field of the CANCONCH register is updated by the received DLC.				
6	тхок	The comn When the are enable supplied f	Transmit OK The communication enabled by transmission is completed. When the controller is ready to send a frame, if two or more message ob are enabled as producers, the lower index message object (0 to 13) is supplied first. This flag can generate an interrupt.				
5	RXOK	The comn In the cas message	Receive OK The communication enabled by reception is completed. In the case of two or more message object reception hits, the lower index message object (0 to 13) is updated first. This flag can generate an interrupt.				
4	BERR	Bit Error (Only in Transmission) The bit value monitored is different from the bit value sent. Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting a dominant bit during the sending of an error frame. This flag can generate an interrupt.					
3	SERR		-	five consecuti an interrupt.	ve bits with th	e same polari	ty.
2	CERR	CRC Error The receiver performs a CRC check on each destuffed received from the start of frame up to the data field. If this checking does not match with the destuffed CRC field, a C set. This flag can generate an interrupt.					·
1	FERR	Form Error The form error results from one or more violations of the fixed form in t following bit fields: CRC delimiter acknowledgment delimiter end_of_frame This flag can generate an interrupt.				m in the	
0	AERR	No detect	edgment Erro ion of the dom can generate a	ninant bit in the	e acknowledg	e slot.	

Note: See Figure 41.

Table 71. CANIDT1 Register for V2.0 part A

CANIDT1 for V2.0 part A (S:BCh) CAN Identifier Tag Registers 1

7	6	5	4	3	2	1	0
IDT 10	IDT 9	IDT 8	IDT 7	IDT 6	IDT 5	IDT 4	IDT 3
Bit Number	Bit Mnemonic	Descriptie	Description				
7-0	IDT10:3	IDentifier See Figur					

No default value after reset.

Table 72. CANIDT2 Register for V2.0 part A

CANIDT2 for V2.0 part A (S:BDh) CAN Identifier Tag Registers 2

7	6	5	4	3	2	1	0
IDT 2	IDT 1	IDT 0	-	-	-	-	-

Bit Number	Bit Mnemonic	Description
7-5	IDT2:0	IDentifier tag value See Figure 45.
4-0	-	Reserved The values read from these bits are indeterminate. Do not set these bits.

No default value after reset.

Table 73. CANIDT3 Register for V2.0 part A

CANIDT3 for V2.0 part A (S:BEh) CAN Identifier Tag Registers 3

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonie	ic Description					
7-0	-	Reserved The value		ese bits are ir	ndeterminate.	Do not set the	ese bits.

Table 74. CANIDT4 Register for V2.0 part A

CANIDT4 for V2.0 part A (S:BFh) CAN Identifier Tag Registers 4

7	6	5	4	3	2	1	0
-	-	-	-	-	RTRTAG	-	RB0TAG
Bit Number	Bit Mnemonic	Descriptio	Description				
7-3	-		Reserved The values read from these bits are indeterminate. Do not set these bits.				
2	RTRTAG	Remote T	ransmission	Request Tag	Value.		
1	-		Reserved The values read from this bit are indeterminate. Do not set these bit.				
0	RB0TAG	Reserved	Bit 0 Tag Va	lue.			

No default value after reset.

Table 75. CANIDT4 Register for V2.0 part A

CANIDT1 for V2.0 part B (S:BCh) CAN Identifier Tag Registers 1

7	6	5	4	3	2	1	0
IDT 28	IDT 27	IDT 26	IDT 25	IDT 24	IDT 23	IDT 22	IDT 21
Bit Number			Description				
Number	Bit Mnemonic	Description	on				

No default value after reset.

Table 76. CANIDT2 Register for V2.0 part B

CANIDT2 for V2.0 part B (S:BDh) CAN Identifier Tag Registers 2

7	6	5	4	3	2	1	0
IDT 20	IDT 19	IDT 18	IDT 17	IDT 16	IDT 15	IDT 14	IDT 13
Bit Number	Bit Mnemonic	Description	Description				
7-0	IDT20:13	IDentifier See Figur	Tag Value e 45.				

Table 77. CANIDT3 Register for V2.0 part B

CANIDT3 for V2.0 part B (S:BEh) CAN Identifier Tag Registers 3

7	6	5	4	3	2	1	0
IDT 12	IDT 11	IDT 10	IDT 9	IDT 8	IDT 7	IDT 6	IDT 5
Bit Number	Bit Mnemonic	Descriptio	Description				
7-0	IDT12:5	IDentifier See Figure	Tag Value e 45.				

No default value after reset.

Table 78. CANIDT4 Register for V2.0 part B

CANIDT4 for V2.0 part B (S:BFh) CAN Identifier Tag Registers 4

7	6	5	4	3	2	1	0
IDT 4	IDT 3	IDT 2	IDT 1	IDT 0	RTRTAG	RB1TAG	RB0TAG

	· ·					
Bit Number	Bit Mnemonic	Description				
7-3	IDT4:0	IDentifier Tag Value See Figure 45.				
2	RTRTAG	Remote Transmission Request Tag Value				
1	RB1TAG	Reserved bit 1 Tag Value				
0	RB0TAG	Reserved bit 0 Tag Value				

No default value after reset.

Table 79. CANIDM1 Register for V2.0 part A

CANIDM1 for V2.0 part A (S:C4h) CAN Identifier Mask Registers 1

7	6	5	4	3	2	1	0
IDMSK 10	IDMSK 9	IDMSK 8	IDMSK 7	IDMSK 6	IDMSK 5	IDMSK 4	IDMSK 3
Bit Number	Bit Mnemonic	Descriptio	on				
7-0	IDTMSK10:3	0 - compa	mask value rison true forc parison enabl e 45.				

Table 80. CANIDM2 Register for V2.0 part A

CANIDM2 for V2.0 part A (S:C5h) CAN Identifier Mask Registers 2

7	6	5	4	3	2	1	0			
IDMSK 2	IDMSK 1	IDMSK 0	-	-	-	-	-			
Bit Number	Bit Mnemoni	c Descriptie	Description							
7-5	IDTMSK2:0	0 - compa 1 - bit com	Dentifier Mask Value) - comparison true forced. - bit comparison enabled. See Figure 45.							
4-0	-	Reserved The value	Reserved The values read from these bits are indeterminate. Do not set these bits.							

No default value after reset.

Table 81. CANIDM3 Register for V2.0 part A

CANIDM3 for V2.0 part A (S:C6h) CAN Identifier Mask Registers 3

7	6	5	4	3	2	1	0			
-	-	-	-	-	-	-	-			
Bit Number	Bit Mnemonie	c Description	Description							
7-0	-	Reserved The value		ese bits are ir	ndeterminate.					

Table 82. CANIDM4 Register for V2.0 part A

CANIDM4 for V2.0 part A (S:C7h) CAN Identifier Mask Registers 4

7	6	5	4	3	2	1	0			
-	-	-	-	-	RTRMSK	-	IDEMSK			
Bit Number	Bit Mnemoni	c Descripti	Description							
7-3	-	Reserved The value	Reserved The values read from these bits are indeterminate. Do not set these bits.							
2	RTRMSK	0 - compa	Remote Transmission Request Mask Value) - comparison true forced. 1 - bit comparison enabled.							
1	-		Reserved The value read from this bit is indeterminate. Do not set this bit.							
0	IDEMSK	0 - compa	Extension N rison true force aparison enab	ced.						

Note: The ID Mask is only used for reception.

No default value after reset.

Table 83. CANIDM1 Register for V2.0 part B

CANIDM1 for V2.0 part B (S:C4h) CAN Identifier Mask Registers 1

7	6	5	4	3	2	1	0
IDMSK 28	IDMSK 27	IDMSK 26	IDMSK 25	IDMSK 24	IDMSK 23	IDMSK 22	IDMSK 21
Bit Number	Bit Mnemon	ic Description	on				
7-0	IDMSK28:2	1 0 - compa	Mask Value rison true forc parison enab e 45.				

Note: The ID Mask is only used for reception.

Table 84. CANIDM2 Register for V2.0 part B

CANIDM2 for V2.0 part B (S:C5h) CAN Identifier Mask Registers 2

7	6	5	4	3	2	1	0
IDMSK 20	IDMSK 19	IDMSK 18	IDMSK 17	IDMSK 16	IDMSK 15	IDMSK 14	IDMSK 13
Bit Number	Bit Mnemon	ic Description	on				
7-0	IDMSK20:1	0 - compa	Mask Value rison true forc aparison enab e 45.				

Note: The ID Mask is only used for reception.

No default value after reset.

Table 85. CANIDM3 Register for V2.0 part B

CANIDM3 for V2.0 part B (S:C6h) CAN Identifier Mask Registers 3

7	6	5	4	3	2	1	0
IDMSK 12	IDMSK 11	IDMSK 10	IDMSK 9	IDMSK 8	IDMSK 7	IDMSK 6	IDMSK 5
Bit Number	Bit Mnemoni	c Descriptie	on				
7-0	IDMSK12:5	0 - compa	Mask Value rison true forc parison enab e 45.				

Note: The ID Mask is only used for reception.

Table 86. CANIDM4 Register for V2.0 part B

CANIDM4 for V2.0 part B (S:C7h) CAN Identifier Mask Registers 4

7	6	5	4	3	2	1	0			
IDMSK 4	IDMSK 3	IDMSK 2	MSK 2 IDMSK 1 IDMSK 0 RTRMSK - IDEI							
Bit Number	Bit Mnemoni	c Descriptio	on							
7-3	IDMSK4:0	0 - compa 1 - bit com	Dentifier Mask Value - comparison true forced. - bit comparison enabled. ee Figure 45.							
2	RTRMSK	0 - compa	ransmission rison true forc aparison enab		sk Value					
1	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.							
0	IDEMSK	0 - compa	Dentifier Extension Mask Value) - comparison true forced. 1 - bit comparison enabled.							

Note: The ID Mask is only used for reception.

No default value after reset.

Table 87. CANMSG Register

CANMSG (S:A3h) CAN Message Data Register

7	6	5	4	3	2	1	0				
MSG 7	MSG 6	MSG 5	MSG 4	MSG 3	MSG 2	MSG 1	MSG 0				
Bit Number	Bit Mnemonic	Descriptio	Description								
7-0	MSG7:0	object regi After writin specified r index. If an reading cy	er contains the ister. Ing in the page message loca uto-increment rcle, the mailb	ne mailbox dat message obje tion (in the ma ation is used, ox pointer is a d loop (0, 1,	ect register, th ilbox) of the p at the end of t uto-incremen	is byte is equ pre-defined ide the data regis	al to the entifier + ter writing or				

AT89C51CC03

Table 88. CANTCON Register

CANTCON (S:A1h) CAN Timer ClockControl

7	6	5	4	3	2	1	0
TPRESC 7	TPRESC 6	TPRESC 5	TPRESC 4	TPRESC 3	TPRESC 2	TPRESC 1	TPRESC 0
Bit Number	Bit Mnemon	ic Descripti	on				
7-0	TPRESC7:(This regis	to 255.	N Timer Iler for the ma	in timer upper	counter	

Reset Value = 00h

Table 89. CANTIMH Register

CANTIMH (S:ADh Read Only) CAN Timer High

7	6	5	4	3	2	1	0		
CANGTIM 15	CANGTIM 14	CANGTIM 13	CANGTIM 12	CANGTIM 11	CANGTIM 10	CANGTIM 9	CANGTIM 8		
Bit Number	Bit Mnemonie	c Descriptio	Description						
7-0	CANGTIM15 8	: High byte See Figure	e of Message e 46.	Timer					

Reset Value = 0000 0000b

Table 90. CANTIML Register

CANTIML (S:ACh Read Only) CAN Timer Low

7	6	5	4	3	2	1	0		
CANGTIM 7	CANGTIM 6	CANGTIM 5	CANGTIM 4	CANGTIM 3	CANGTIM 2	CANGTIM 1	CANGTIM 0		
Bit Number	Bit Mnemonie	c Descripti	Description						
7-0	CANGTIM7:0	Low byte See Figur	of Message e 46.	Timer					

Reset Value = 0000 0000b

Table 91. CANSTMPH Register

CANSTMPH (S:AFh Read Only) CAN Stamp Timer High

7	6	5	4	3	2	1	0		
TIMSTMP 15	TIMSTMP 14	TIMSTMP 13	TIMSTMP 12	TIMSTMP 11	TIMSTMP 10	TIMSTMP 9	TIMSTMP 8		
Bit Number	Bit Mnemoni	ic Descriptio	Description						
7-0	TIMSTMP15 8	5: High byte See Figure	e of Time Star e 46.	np					

No default value after reset

Table 92. CANSTMPL Register

CANSTMPL (S:AEh Read Only) CAN Stamp Timer Low

7	6	5	4	3	2	1	0
TIMSTMP 7	TIMSTMP 6	TIMSTMP 5	TIMSTMP 4	TIMSTMP 3	TIMSTMP 2	TIMSTMP 1	TIMSTMP 0
Bit Number	Bit Mnemoni	c Descriptie	on				
7-0	TIMSTMP7:	D Low byte See Figur	of Time Stan e 46.	np			

No default value after reset

Table 93. CANTTCH Register

CANTTCH (S:A5h Read Only) CAN TTC Timer High

7	6	5	4	3	2	1	0
TIMTTC 15	TIMTTC 14	TIMTTC 13	TIMTTC 12	TIMTTC 11	TIMTTC 10	TIMTTC 9	TIMTTC 8
Bit Number	Bit Mnemoni	c Description	on				
7-0	TIMTTC15:8	High byte See Figur	e of TTC Time e 46.	r			

Reset Value = 0000 0000b

AT89C51CC03

Table 94. CANTTCL Register

CANTTCL (S:A4h Read Only) CAN TTC Timer Low

7	6	5	4	3	2	1	0	
TIMTTC 7	TIMTTC 6	TIMTTC 5	TIMTTC 4	TIMTTC 3	TIMTTC 2	TIMTTC 1	TIMTTC 0	
Bit Number	Bit Mnemonio	Description	Description					
7-0	TIMTTC7:0	Low byte See Figur	of TTC Time e 46.	r				

Reset Value = 0000 0000b

Programmable Counter Array (PCA)

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture modules. Its clock input can be programmed to count any of the following signals:

- PCA clock frequency/6 (see "clock" section)
- PCA clock frequency/2
- Timer 0 overflow
- External input on ECI (P1.2)

Each compare/capture modules can be programmed in any one of the following modes:

- rising and/or falling edge capture,
- software timer,
- high-speed output,
- pulse width modulator.

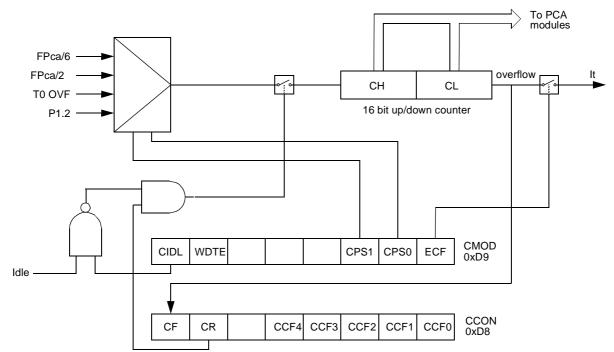
Module 4 can also be programmed as a WatchDog timer. see the "PCA WatchDog Timer" section.

When the compare/capture modules are programmed in capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/Os. These pins are listed below. If the port is not used for the PCA, it can still be used for standard I/O.

PCA Component	External I/O Pin
16-bit Counter	P1.2/ECI
16-bit Module 0	P1.3/CEX0
16-bit Module 1	P1.4/CEX1
16-bit Module 2	P1.5/CEX2
16-bit Module 3	P1.6/CEX3
16-bit Module 4	P1.7/CEX4

PCA Timer


The PCA timer is a common time base for all five modules (see Figure 48). The timer count source is determined from the CPS1 and CPS0 bits in the CMOD SFR (see Table 8) and can be programmed to run at:

- 1/6 the PCA clock frequency.
- 1/2 the PCA clock frequency.
- the Timer 0 overflow.
- the input on the ECI pin (P1.2).

Figure 48. PCA Timer/Counter

The CMOD register includes three additional bits associated with the PCA.

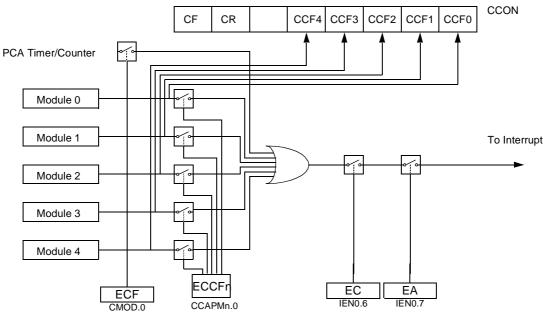
- The CIDL bit which allows the PCA to stop during idle mode.
- The WDTE bit which enables or disables the WatchDog function on module 4.
- The ECF bit which when set causes an interrupt and the PCA overflow flag CF in CCON register to be set when the PCA timer overflows.

The CCON register contains the run control bit for the PCA and the flags for the PCA timer and each module.

- The CR bit must be set to run the PCA. The PCA is shut off by clearing this bit.
- The CF bit is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in CMOD register is set. The CF bit can only be cleared by software.
- The CCF0:4 bits are the flags for the modules (CCF0 for module0...) and are set by hardware when either a match or a capture occurs. These flags also can be cleared by software.

PCA modules Each one of the five compare/capture modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered
- 16-bit Capture, negative-edge triggered
- 16-bit Capture, both positive and negative-edge triggered
- 16-bit Software Timer
- 16-bit High Speed Output
- 8-bit Pulse Width Modulator.

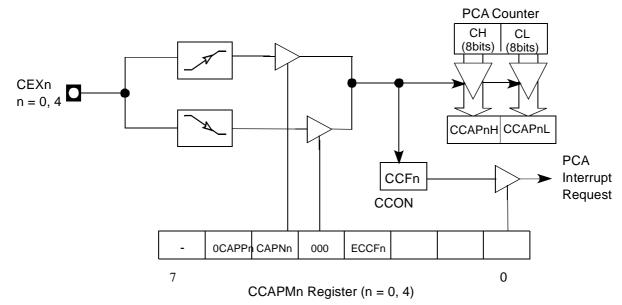

In addition module 4 can be used as a WatchDog Timer.

Each module in the PCA has a special function register associated with it (CCAPM0 for module 0 ...). The CCAPM0:4 registers contain the bits that control the mode that each module will operate in.

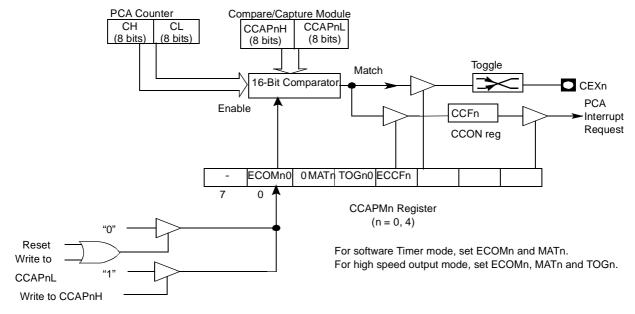
- The ECCF bit enables the CCF flag in the CCON register to generate an interrupt when a match or compare occurs in the associated module.
- The PWM bit enables the pulse width modulation mode.
- The TOG bit when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the module's capture/compare register.
- The match bit MAT when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare register.
- The two bits CAPN and CAPP in CCAPMn register determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled.
- The bit ECOM in CCAPM register when set enables the comparator function.

PCA Interrupt

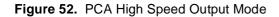
Figure 49. PCA Interrupt System

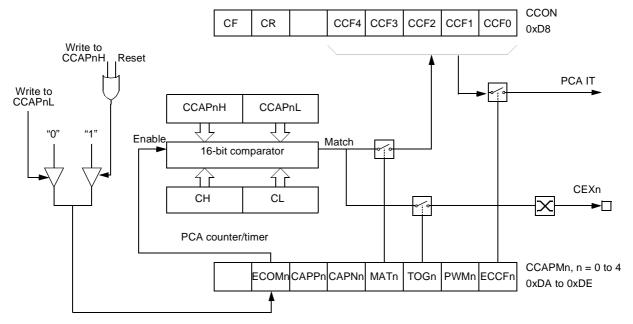

PCA Capture Mode

To use one of the PCA modules in capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated.


Figure 50. PCA Capture Mode

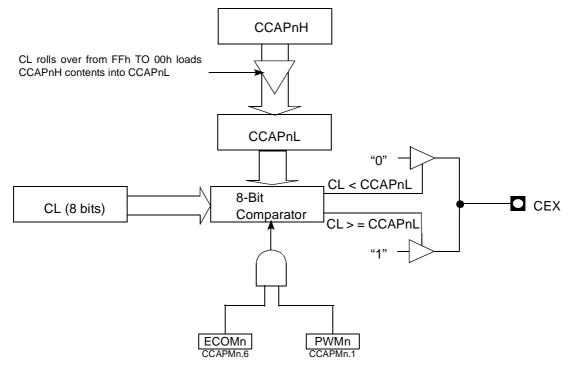
16-bit Software TimerThe PCA modules can be
bits in the modules CCA
capture registers and we


The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set.


Figure 51. PCA 16-bit Software Timer and High Speed Output Mode

High Speed Output Mode

In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set.


Pulse Width Modulator Mode

All the PCA modules can be used as PWM outputs. The output frequency depends on the source for the PCA timer. All the modules will have the same output frequency because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than it, the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. the allows the PWM to be updated without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Figure 53. PCA PWM Mode

PCA WatchDog Timer

An on-board WatchDog timer is available with the PCA to improve system reliability without increasing chip count. WatchDog timers are useful for systems that are sensitive to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a WatchDog. However, this module can still be used for other modes if the WatchDog is not needed. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

To hold off the reset, the user has three options:

- periodically change the compare value so it will never match the PCA timer,
- periodically change the PCA timer value so it will never match the compare values, or
- disable the WatchDog by clearing the WDTE bit before a match occurs and then reenable it.

The first two options are more reliable because the WatchDog timer is never disabled as in the third option. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. If other PCA modules are being used the second option not recommended either. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

PCA Registers

Table 95. CMOD Register

CMOD (S:D9h) PCA Counter Mode Register

7	6	5	4	3	2	1	0	
CIDL	WDTE	-	-	-	CPS1	CPS0	ECF	
Bit Number	Bit Mnemonic	Description						
7	CIDL	Clear to let the		I bit uring Idle mod Idle mode is i				
6	WDTE	•		g Timer functic	on on PCA Mo	dule 4,		
5	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
4	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
2	CPS1		0 1 Internal Clock, FPca/2 1 0 Timer 0 overflow					
1	CPS0	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
0	ECF	Clear to disa	ble CF bit in (erflow Interru CCON register ON register to	to generate a			

Reset Value = 00XX X000b

Table 96. CCON Register

CCON (S:D8h) PCA Counter Control Register

7	6	5	4	3	2	1	0	
CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	
Bit Number	Bit Mnemonic	Description						
7	CF	Set by hardw interrupt requ		PCA Timer/C F bit in CMOD		•	rates a PCA	
6	CR	Clear to turn	Counter Run the PCA Time e PCA Timer	er/Counter off.				
5	-	Reserved The value re	ad from this b	it is indetermir	nate. Do not s	et this bit.		
4	CCF4	Set by hardw interrupt requ	are when a n	Capture flag natch or captu CF 4 bit in CC re.		•	PCA	
3	CCF3	Set by hardw interrupt requ	are when a n	Capture flag natch or captu CF 3 bit in CC re.		•	PCA	
2	CCF2	Set by hardw interrupt requ	vare when a n	Capture flag natch or captu CF 2 bit in CC re.			PCA	
1	CCF1	Set by hardw interrupt requ	PCA Module 1 Compare/Capture flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 1 bit in CCAPM 1 register is set. Must be cleared by software.					
0	CCF0	Set by hardw interrupt requ	are when a n	Capture flag natch or captu CF 0 bit in CC re.		-	PCA	

Reset Value = 00X0 0000b

Table 97. CCAPnH Registers

7	6	5	4	3	2	1	0
CCAPnH 7	CCAPnH 6	CCAPnH 5	CCAPnH 4	CCAPnH 3	CCAPnH 2	CCAPnH 1	CCAPnH 0
Bit	Bit			-		-	-

Bit Number	Bit Mnemonic	Description
7:0	CCAPnH 7:0	High byte of EWC-PCA comparison or capture values

Reset Value = 0000 0000b

Table 98. CCAPnL Registers

CCAPOL (S:EAh) CCAP1L (S:EBh) CCAP2L (S:ECh) CCAP3L (S:EDh) CCAP4L (S:EEh) PCA Low Byte Compare/Capture Module n Register (n=0..4)

7	6	5	4	3	2	1	0
CCAPnL 7	CCAPnL 6	CCAPnL 5	CCAPnL 4	CCAPnL 3	CCAPnL 2	CCAPnL 1	CCAPnL 0
Bit Number	Bit Mnemonic	Description					
7:0	CCAPnL 7:0	Low byte of I	EWC-PCA cor	mparison or ca	apture values		

Reset Value = 0000 0000b

Table 99. CCAPMn Registers

CCAPM0 (S:DAh) CCAPM1 (S:DBh) CCAPM2 (S:DCh) CCAPM3 (S:DDh) CCAPM4 (S:DEh) PCA Compare/Capture Module n Mode registers (n=0..4)

7	6	5	4	3	2	1	0		
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The Value re	ad from this b	it is indetermi	nate. Do not s	et this bit.			
6	ECOMn	Clear to disa Set to enable The Compare	Enable Compare Mode Module x bit Clear to disable the Compare function. Set to enable the Compare function. The Compare function is used to implement the software Timer, the high-speed utput, the Pulse Width Modulator (PWM) and the WatchDog Timer (WDT).						
5	CAPPn	Clear to disa	Capture Mode (Positive) Module x bit Clear to disable the Capture function triggered by a positive edge on CEXx pin. Set to enable the Capture function triggered by a positive edge on CEXx pin						
4	CAPNn	Clear to disa	ble the Captu) Module x bit re function trig function trigge	gered by a ne				
3	MATn		natch of the F	PCA Counter v r, flagging an i		are/Capture re	egister sets		
2	TOGn	The toggle m Set when a m	Toggle Module x bit The toggle mode is configured by setting ECOMx, MATx and TOGx bits. Set when a match of the PCA Counter with the Compare/Capture register toggles the CEXx pin.						
1	PWMn	Pulse Width Modulation Module x Mode bit Set to configure the module x as an 8-bit Pulse Width Modulator with output waveform on CEXx pin.							
0	ECCFn	Clear to disa		i t n CCON regis CCON registe					

Reset Value = X000 0000b

Table 100. CH Register

CH (S:F9h) PCA Counter Register High Value

7	6	5	4	3	2	1	0
CH 7	CH 6	CH 5	CH 4	CH 3	CH 2	CH 1	CH 0
Dit	5%						
Bit Number	Bit Mnemonic	Description					

Reset Value = 0000 00000b

Table 101. CL Register

CL (S:E9h) PCA counter Register Low Value

7	6	5	4	3	2	1	0
CL 7	CL 6	CL 5	CL 4	CL 3	CL 2	CL 1	CL 0
Bit	Bit	Description					
Number	Mnemonic	Description					

Reset Value = 0000 00000b

Analog-to-Digital Converter (ADC)	This section describes the on-chip 10 bit analog-to-digital converter of the AT89C51CC03. Eight ADC channels are available for sampling of the external sources AN0 to AN7. An analog multiplexer allows the single ADC converter to select one from the 8 ADC channels as ADC input voltage (ADCIN). ADCIN is converted by the 10-bit cascaded potentiometric ADC. Two kinds of conversion are available: - Standard conversion (8 bits).
	 Precision conversion (10 bits). For the precision conversion, set bit PSIDLE in ADCON register and start conversion.
	The device is in a pseudo-idle mode, the CPU does not run but the peripherals are always running. This mode allows digital noise to be as low as possible, to ensure high precision conversion.
	For this mode it is necessary to work with end of conversion interrupt, which is the only way to wake the device up.
	If another interrupt occurs during the precision conversion, it will be treated only after this conversion is ended.
Features	 8 channels with multiplexed inputs 10-bit cascaded potentiometric ADC Conversion time 16 micro-seconds (typ.) Zero Error (offset) ± 2 LSB max Positive External Reference Voltage Range (VREF) 2.4 to 3.0Volt (typ.) ADCIN Range 0 to 3Volt Integral non-linearity typical 1 LSB, max. 2 LSB Differential non-linearity typical 0.5 LSB, max. 1 LSB Conversion Complete Flag or Conversion Complete Interrupt Selectable ADC Clock
ADC Port1 I/O Functions	Port 1 pins are general I/O that are shared with the ADC channels. The channel select bit in ADCF register define which ADC channel/port1 pin will be used as ADCIN. The remaining ADC channels/port1 pins can be used as general-purpose I/O or as the alternate function that is available.

A conversion launched on a channel which are not selected on ADCF register will not have any effect.

Figure 54. ADC Description

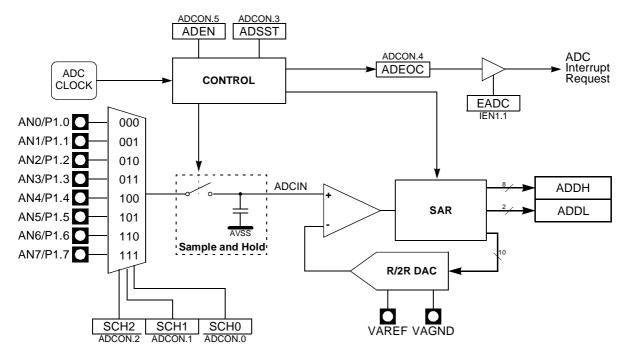
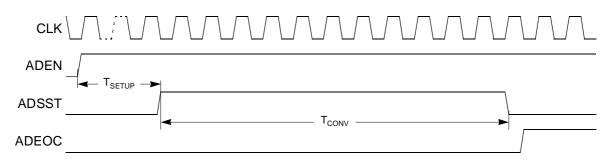



Figure 55 shows the timing diagram of a complete conversion. For simplicity, the figure depicts the waveforms in idealized form and do not provide precise timing information. For ADC characteristics and timing parameters refer to the Section "AC Characteristics" of the AT89C51CC03 datasheet.

Figure 55. Timing Diagram

Note: Tsetup min = 4 us

Tconv=11 clock ADC = 1sample and hold + 10 bit conversion The user must ensure that 4 us minimum time between setting ADEN and the start of the first conversion.

ADC Converter Operation

A start of single A/D conversion is triggered by setting bit ADSST (ADCON.3).

After completion of the A/D conversion, the ADSST bit is cleared by hardware.

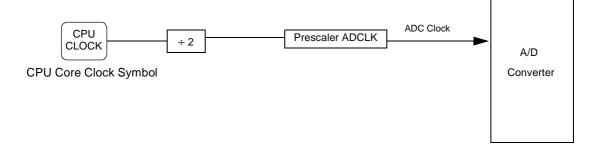
The end-of-conversion flag ADEOC (ADCON.4) is set when the value of conversion is available in ADDH and ADDL, it must be cleared by software. If the bit EADC (IEN1.1) is set, an interrupt occur when flag ADEOC is set (see Figure 57). Clear this flag for rearming the interrupt.

The bits SCH0 to SCH2 in ADCON register are used for the analog input channel selection.

SCH2	SCH1	SCH0	Selected Analog input
0	0	0	ANO
0	0	1	AN1
0	1	0	AN2
0	1	1	AN3
1	0	0	AN4
1	0	1	AN5
1	1	0	AN6
1	1	1	AN7

Table 102. Selected Analog input

Voltage Conversion When the ADCIN is equals to VAREF the ADC converts the signal to 3FFh (full scale). If the input voltage equals VAGND, the ADC converts it to 000h. Input voltage between VAREF and VAGND are a straight-line linear conversion. All other voltages will result in 3FFh if greater than VAREF and 000h if less than VAGND.


Note that ADCIN should not exceed VAREF absolute maximum range! (See section "AC-DC")

Clock Selection

The ADC clock is the same as CPU.

The maximum clock frequency for ADC is 700 KHz. A prescaler is featured (ADCCLK) to generate the ADC clock from the oscillator frequency.

Figure 56. A/D Converter clock

ADC Standby Mode When the ADC is not used, it is possible to set it in standby mode by clearing bit ADEN in ADCON register. In this mode its power dissipation is about 1 µW.

IT ADC Management An interrupt end-of-conversion will occurs when the bit ADEOC is activated and the bit EADC is set. For re-arming the interrupt the bit ADEOC must be cleared by software.

Figure 57. ADC Interrupt Structure

ADCI ADEOC ADCON.2 EADC **Routines examples** 1. Configure P1.2 and P1.3 in ADC channels // configure channel P1.2 and P1.3 for ADC ADCF = 0Ch// Enable the ADC ADCON = 20h2. Start a standard conversion // The variable "channel" contains the channel to convert // The variable "value converted" is an unsigned int // Clear the field SCH[2:0] ADCON and = F8h// Select channel ADCON | = channel // Start conversion in standard mode ADCON | = 08h // Wait flag End of conversion while((ADCON and 01h)! = 01h) // Clear the End of conversion flag ADCON and = EFh // read the value value_converted = (ADDH << 2)+(ADDL)</pre> Start a precision conversion (need interrupt ADC) // The variable "channel" contains the channel to convert // Enable ADC EADC = 1// clear the field SCH[2:0] ADCON and = F8h // Select the channel ADCON | = channel // Start conversion in precision mode ADCON | = 48h Note: to enable the ADC interrupt: EA = 1

Registers

Table 103. ADCF Register

ADCF (S:F6h) ADC Configuration

7	6	5	4	3	2	1	0
CH 7	CH 6	CH 5	CH 4	CH 3	CH 2	CH 1	CH 0
Bit Number	Bit Mnemonic	Description					
7-0	CH 0:7		nfiguration 1.x as ADC in P1.x as stanc				

Reset Value =0000 0000b

Table 104. ADCON Register

ADCON (S ADC Contr	:F3h) ol Register							
7	6	5	4	3	2	1	0	
-	PSIDLE	ADEN	ADEOC	ADSST	SCH2	SCH1	SCH0	
Bit Number	Bit Mnemonic	Description						
7	-							
6	PSIDLE	Set to put in	Mode (Best I idle mode duri vert without idl	ing conversior	n			
5	ADEN	Enable/Stan Set to enable Clear for Sta	•	ower dissipati	on 1 uW).			
4	ADEOC	Set by hardwinterrupt.	End Of Conversion Set by hardware when ADC result is ready to be read. This flag can generate an interrupt. Must be cleared by software.					
3	ADSST		atus n A/D convers ardware after		the conversion	on		
2-0	SCH2:0	Selection of see Table 10	Channel to C 2	Convert				

Reset Value =X000 0000b

Table 105. ADCLK Register

ADCLK (S:F2h) ADC Clock Prescaler

7	6	5	4	3	2	1	0
-	-	-	PRS 4	PRS 3	PRS 2	PRS 1	PRS 0
Bit Number	Bit Mnemonic	Description					
7-5	-	Reserved The value rea	ad from these	bits are indet	erminate. Do	not set these	bits.
4-0	PRS4:0	Clock Presc f _{ADC} = fcpu cl		in X2 mode)* ((PRS +1))		

Reset Value = XXX0 0000b

Table 106. ADDH Register

ADDH (S:F5h Read Only) ADC Data High Byte Register

7	6	5	4	3	2	1	0
ADAT 9	ADAT 8	ADAT 7	ADAT 6	ADAT 5	ADAT 4	ADAT 3	ADAT 2
Bit	Bit						
Number	Mnemonic	Description					
7-0	ADAT9:2	ADC result bits 9-2					

Reset Value = 00h

Table 107. ADDL Register

ADDL (S:F4h Read Only) ADC Data Low Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	ADAT 1	ADAT 0
Bit Number	Bit Mnemonic	Description					
7-2	-	Reserved The value rea	ad from these	bits are indet	erminate. Do	not set these I	oits.
1-0	ADAT1:0	ADC result bits 1-0					

Reset Value = 00h

Interrupt System

Introduction

The CAN Controller has a total of 10 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), a serial port interrupt, a PCA, a CAN interrupt, a timer overrun interrupt and an ADC. These interrupts are shown below.

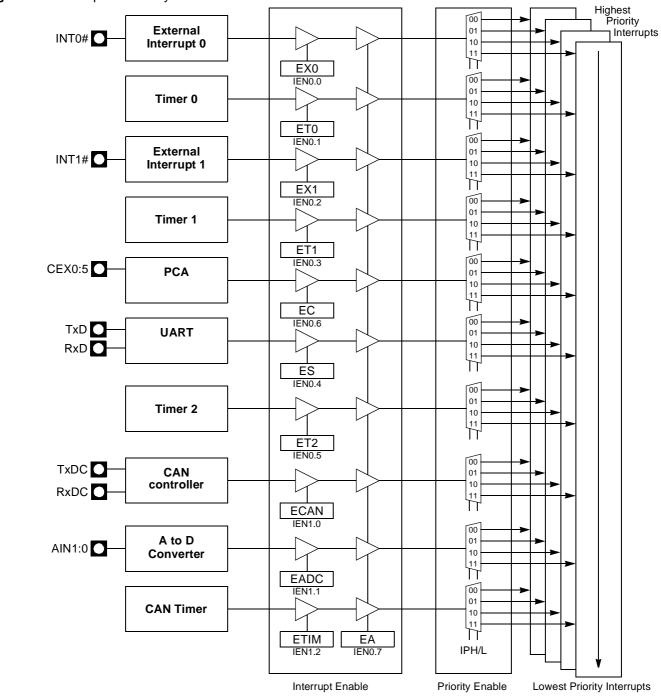


Figure 58. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register. This register also contains a global disable bit which must be cleared to disable all the interrupts at the same time.

Each interrupt source can also be individually programmed to one of four priority levels by setting or clearing a bit in the Interrupt Priority registers. The Table below shows the bit values and priority levels associated with each combination.

IPH.x	IPL.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

Table 108. Priority Level Bit Values

A low-priority interrupt can be interrupted by a high priority interrupt but not by another low-priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of the higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence, see Table 109.

Interrupt Name	Interrupt Address Vector	Priority Number
external interrupt (INT0)	0003h	1
Timer0 (TF0)	000Bh	2
external interrupt (INT1)	0013h	3
Timer1 (TF1)	001Bh	4
PCA (CF or CCFn)	0033h	5
UART (RI or TI)	0023h	6
Timer2 (TF2)	002Bh	7
CAN (Txok, Rxok, Err or OvrBuf)	003Bh	8
ADC (ADCI)	0043h	9
CAN Timer Overflow (OVRTIM)	004Bh	10

 Table 109.
 Interrupt priority Within level

Registers

Table 110. IEN0 Register

IEN0 (S:A8h) Interrupt Enable Register

7	6	5	4	3	2	1	0	
EA	EC	ET2	ES	ET1	EX1	ET0	EX0	
Bit Number	Bit Mnemonic	Description						
7	EA	Set to enable If EA=1, each	ble all interrup all interrupts	urce is individu	ally enabled o	or disabled by	^r setting or	
6	EC		pt Enable ble the PCA i e the PCA inte					
5	ET2	Clear to disa	ble Timer 2 o	pt Enable bit verflow interru rflow interrupt.				
4	ES		Enable bit ble serial port e serial port in	•				
3	ET1	Clear to disa	ble timer 1 ov	pt Enable bit erflow interrup flow interrupt.	ot.			
2	EX1	Clear to disa	External Interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.					
1	ET0	Clear to disa	Timer 0 Overflow Interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.					
0	EX0	Clear to disa	errupt 0 Enal ble external ir e external inte	nterrupt 0.				

Reset Value = 0000 0000b bit addressable

Table 111. IEN1 Register

IEN1 (S:E8h) Interrupt Enable Register

7	6	5	4	3	2	1	0	
-	-	-	-	-	ETIM	EADC	ECAN	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
2	ETIM	Clear to disa	Fimer Overrun Interrupt Enable bit Clear to disable the timer overrun interrupt. Set to enable the timer overrun interrupt.					
1	EADC	Clear to disa	ADC Interrupt Enable bit Clear to disable the ADC interrupt. Set to enable the ADC interrupt.					
0	ECAN	Clear to disa	CAN Interrupt Enable bit Clear to disable the CAN interrupt. Set to enable the CAN interrupt.					

Reset Value = xxxx x000b bit addressable

Table 112. IPL0 Register

IPL0 (S:B8h) Interrupt Enable Register

7	6	5	4	3	2	1	0		
-	PPC	PT2	PT2 PS PT1 PX1 PT0 PX0						
Bit Number	Bit Mnemonic	Description	Description						
7	-	Reserved The value re	ad from this b	it is indetermir	nate. Do not s	et this bit.			
6	PPC		pt Priority bit CH for priority						
5	PT2		Timer 2 Overflow Interrupt Priority bit Refer to PT2H for priority level.						
4	PS	Serial Port F Refer to PSH	Priority bit I for priority le	evel.					
3	PT1		rflow Interru H for priority I	pt Priority bit evel.					
2	PX1		External Interrupt 1 Priority bit Refer to PX1H for priority level.						
1	PT0		Fimer 0 Overflow Interrupt Priority bit Refer to PT0H for priority level.						
0	PX0		errupt 0 Prion	-					

Reset Value = X000 0000b bit addressable

Table 113. IPL1 Register

IPL1 (S:F8h) Interrupt Priority Low Register 1

7	6	5	4	3	2	1	0		
-	-	-	-		POVRL	PADCL	PCANL		
Bit Number	Bit Mnemonic	Description	Description						
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
2	POVRL		Fimer Overrun Interrupt Priority Level Less Significant Bit Refer to PI2CH for priority level.						
1	PADCL		ADC Interrupt Priority Level Less Significant Bit Refer to PSPIH for priority level.						
0	PCANL		CAN Interrupt Priority Level Less Significant Bit Lefer to PKBH for priority level.						

Reset Value = XXXX X000b bit addressable

Table 114. IPL0 Register

IPH0 (B7h) Interrupt High Priority Register

7	6	5	4	3	2	1	0
-	PPCH	PT2H	PSH	PT1H	PX1H	РТОН	PX0H
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
6	PPCH	PCA Interru PPCH PPC 0 0 1 0 1 1			nificant bit		
5	PT2H	Timer 2 Ove PT2H PT2 0 0 1 0 1 1	rflow Interru Priority Le Lowest Highest	pt High Prior <u>vel</u>	ity bit		
4	PSH	Serial Port H PSH PS 0 0 0 1 1 0 1 1	ligh Priority <u>Priority Lev</u> Lowest Highest				
3	PT1H	Timer 1 Ove PT1H PT1 0 0 1 0 1 1	rflow Interru <u>Priority Le</u> Lowest Highest	pt High Prior <u>vel</u>	ity bit		
2	PX1H	External Internation PX1H PX1 0 0 0 1 1 0 1 1	errupt 1 High Priority Lee Lowest Highest				
1	РТОН	Timer 0 Ove PT0H PT0 0 0 1 0 1 1	rflow Interru <u>Priority Lev</u> Lowest Highest	pt High Prior <u>vel</u>	ity bit		
0	PX0H	External Internation PX0H PX0 0 0 0 1 1 0 1 1	errupt 0 high Priority Lev Lowest Highest				

Reset Value = X000 0000b

Table 115. IPH1 Register

IPH1 (S:F7h) Interrupt High Priority Register 1

7	6	5	4	3	2	1	0
-	-	-	-		POVRH	PADCH	PCANH
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
5	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
2	POVRH		u n Interrupt V <u>RL Priority I</u> Lowes Highe	st	Most Signifi	cant bit	
1	PADCH		pt Priority Lo <u>CL Priority le</u> Lowest Highest	evel Most Sig <u>vel</u>	nificant bit		
0	PCANH		pt Priority Lo ANL Priority In Lowest Highest	evel Most Sig <u>evel</u>	nificant bit		

Reset Value = XXXX X000b

Electrical Characteristics

Absolute Maximum Ratings

Ambiant Temperature Under Bias:	Note:
I = industrial40°C to 85°C	
Storage Temperature65°C to + 150°C	
Voltage on V_{CC} from V_{SS} 0.5V to + 6V	
Voltage on Any Pin from V_{SS}0.5V to V_{CC} + 0.2 V	
Power Dissipation 1 W	

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

The power dissipation is based on the maximum allowable die temperature and the thermal resistance of the package.

DC Parameters for Standard Voltage

Table 116. DC Parameters in Standard Voltage						
Symbol	Parameter	Min	Тур ⁽⁵⁾	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2Vcc - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 and $4^{(6)}$			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ m A^{(4)}$ $I_{OL} = 7.0 \ m A^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3, 4 and 5	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$\begin{split} I_{OH} &= -10 \; \mu A \\ I_{OH} &= -30 \; \mu A \\ I_{OH} &= -60 \; \mu A \\ V_{CC} &= 3V \; to \; 5.5V \end{split}$
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$\begin{split} I_{OH} &= -200 \; \mu A \\ I_{OH} &= -3.2 \; m A \\ I_{OH} &= -7.0 \; m A \\ V_{CC} &= 5V \pm 10\% \end{split}$
R _{RST}	RST Pulldown Resistor	20	40	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2, 3 and 4			-50	μA	Vin = 0.45V
ILI	Input Leakage Current			±10	μA	$0.45V < Vin < V_{CC}$
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3 and 4			-650	μΑ	Vin = 2.0V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power-down Current		TBD	TBD	μΑ	$3V < V_{CC} < 5.5V^{(3)}$

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{SS} = 0V; V_{CC} = 3V \text{ to } 5.5V; F = 0 \text{ to } 40 \text{ MHz}$ **Table 116.** DC Parameters in Standard Voltage

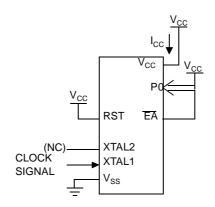
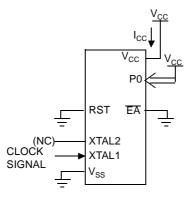

Table 116.	DC Parameters in Star	ndard	Voltage	(Continued)	

Table 1	16.	DC Parameters in Standa	ard Voltag	e (Contin	ued)		
Symbol	DI Parameter Min Typ ⁽⁵⁾				Max	Unit	Test Conditions
I _{cc}	Po	wer Supply Current		D Freq (MHz BD Freq (M			$Vcc = 5.5V^{(1)(2)}$
Notes:		Operating I _{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 62.), $V_{IL} = V_{SS} + 0.5V$, $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; EA = RST = Port 0 = V_{CC} . I _{CC} would be slightly higher if a crystal oscillator used (see Figure 59.). Idle I _{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} ,					
	3.	$T_{CHCL} = 5 \text{ ns}, V_{IL} = V_{SS} + 0.5$ = V_{SS} (see Figure 60.). Power-down I _{CC} is measured V_{CC} ; XTAL2 NC.; RST = V_{SS} and the POF flag must be set	d with all ou (see Figur	ıtput pins d	lisconnecte	d; EA	= V _{CC} , PORT 0 =
	4.	and the POF flag must be set. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be super- imposed on the V_{OL} s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.					
	5.		ypicals are based on a limited number of samples and are not guaranteed. The val- es listed are at room temperature.				
	6.	Under steady state (non-tra- lows:		ditions, I _{OL}	must be e	extern	ally limited as fol-

Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA


Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

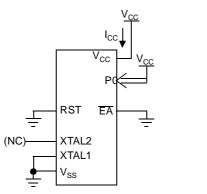
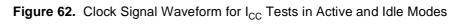
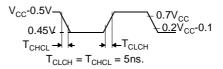

All other pins are disconnected.

Figure 60. I_{CC} Test Condition, Idle Mode




All other pins are disconnected.

All other pins are disconnected.

DC Parameters for A/D Converter

 Table 117. DC Parameters for AD Converter in Precision Conversion

Symbol	Parameter	Min	Typ ⁽¹⁾	Max	Unit	Test Conditions
AVin	Analog input voltage	Vss- 0.2		Vref + 0.2	V	
Rref	Resistance between Vref and Vss	12	16	24	kΩ	
Vref	Reference voltage	2.40		3.00	V	
Cai	Analog input Capacitance		60		pF	During sampling
INL	Integral non linearity		1	2	lsb	
DNL	Differential non linearity		0.5	1	lsb	
OE	Offset error	-2		2	lsb	

Note: 1. Typicals are based on a limited number of samples and are not guaranteed.

AC Parameters

Explanation of the AC Symbols	Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.
	Example: T _{AVLL} = Time for Add <u>ress V</u> alid to ALE Low. T _{LLPL} = Time for ALE Low to PSEN Low.
	TA = -40°C to +85°C; V_{SS} = 0V; V_{CC} = 3V to 5.5V; F = 0 to 40 MHz.
	(Load Capacitance for port 0, ALE and PSEN = 60 pF; Load Capacitance for all other outputs = 60 pF.)
	Table 118, Table 121 and Table 124 give the description of each AC symbols.
	Table 119, Table 123 and Table 125 give for each range the AC parameter.
	Table 120, Table 123 and Table 126 give the frequency derating formula of the AC parameter for each speed range description. To calculate each AC symbols: Take the x value and use this value in the formula.
	Example: T_{LLIV} and 20 MHz, Standard clock. x = 30 ns T = 50 ns T_{CCIV} = 4T - x = 170 ns

External Program Memory Characteristics

Table 118. Symbol Description

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction Float After PSEN
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

Table 119. AC Parameters for a Fix Clock (F = 40 MHz)

Symbol	Min	Мах	Units
Т	25		ns
Т _{ІНІІ}	40		ns
T _{AVLL}	10		ns
T _{LLAX}	10		ns
T _{LLIV}		70	ns
T _{LLPL}	15		ns
T _{PLPH}	55		ns
T _{PLIV}		35	ns
T _{PXIX}	0		ns
T _{PXIZ}		18	ns
T _{AVIV}		85	ns
T _{PLAZ}		10	ns

Symbol	Туре	Standard Clock	X2 Clock	X parameter	Units
T _{LHLL}	Min	2 T - x	T - x	10	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	ns
T _{PXIX}	Min	х	х	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	ns
T _{PLAZ}	Max	х	х	10	ns

 Table 120.
 AC Parameters for a Variable Clock

External Program Memory Read Cycle

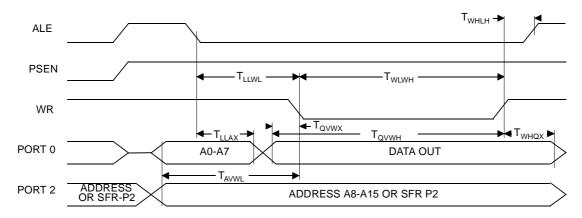
External Data Memory Characteristics

Table 121. Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high

Table 122. AC Parameters for a Variable Clock (F=40MHz)

Symbol	Min	Мах	Units
T _{RLRH}	130		ns
T _{WLWH}	130		ns
T _{RLDV}		100	ns
T _{RHDX}	0		ns
T _{RHDZ}		30	ns
T _{LLDV}		160	ns
T _{AVDV}		165	ns
T _{LLWL}	50	100	ns
T _{AVWL}	75		ns
T _{QVWX}	10		ns
Τ _{QVWH}	160		ns
T _{WHQX}	15		ns
T _{RLAZ}		0	ns
T _{WHLH}	10	40	ns



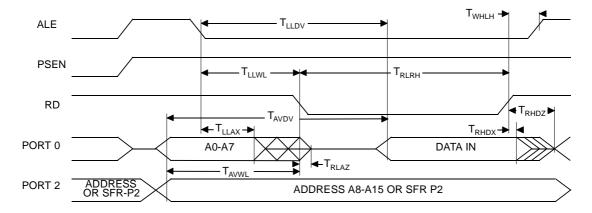

Symbol	Туре	Standard Clock	X2 Clock	X parameter	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	ns
T _{RHDX}	Min	х	х	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	ns
T _{LLDV}	Max	8 T - x	4T -x	40	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	25	ns
T _{WHQX}	Min	Т - х	0.5 T - x	10	ns
T _{RLAZ}	Max	х	x	0	ns
T _{WHLH}	Min	Т - х	0.5 T - x	15	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	ns

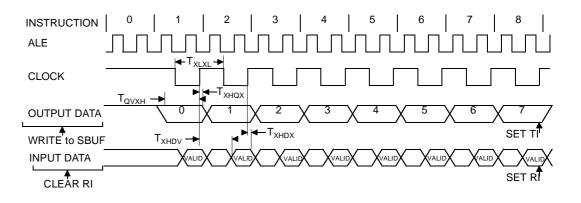
Table 123. AC Parameters for a Variable Clock

External Data Memory Write Cycle

External Data Memory Read Cycle

Serial Port Timing – Shift Register Mode

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid


Table 125.	AC Parameters	for a Fix	Clock	(F = 40 MHz)
------------	---------------	-----------	-------	--------------

Symbol	Min	Мах	Units
T _{XLXL}	300		ns
T _{QVHX}	200		ns
T _{XHQX}	30		ns
T _{XHDX}	0		ns
T _{XHDV}		117	ns

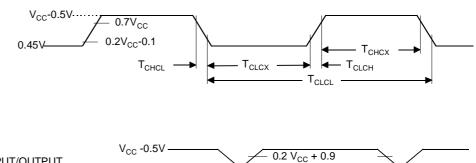
Table 126. AC Parameters for a Variable Clock

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M range	Units
T _{XLXL}	Min	12 T	6 T		ns
T _{QVHX}	Min	10 T - x	5 T - x	50	ns
T _{XHQX}	Min	2 T - x	Т - х	20	ns
T _{XHDX}	Min	х	х	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	ns

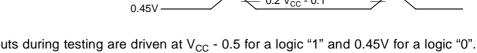
Shift Register Timing Waveforms

External Clock Drive Characteristics (XTAL1)

Table 127. AC Parameters

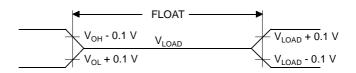

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

AT89C51CC03


External Clock Drive Waveforms

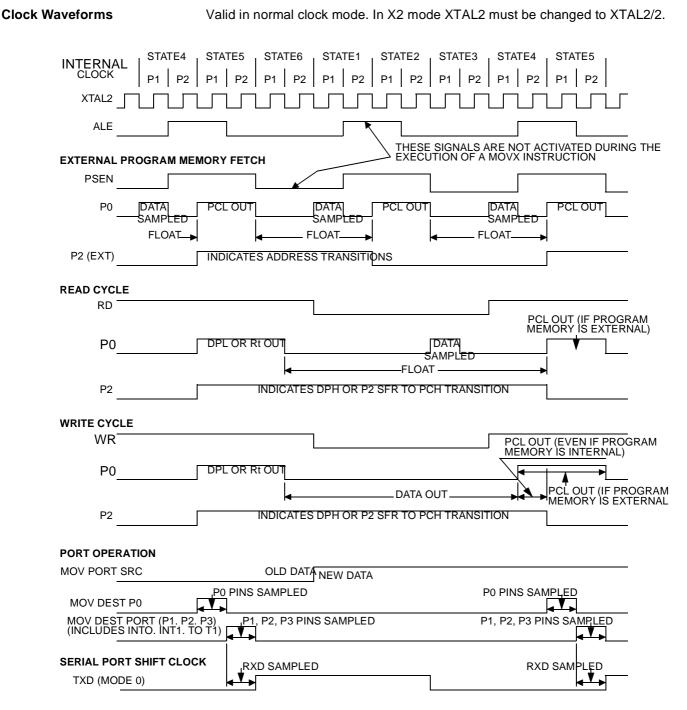
AC Testing Input/Output

Waveforms


INPUT/OUTPUT

0.2 V_{CC} - 0.1

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".


Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A=25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

AT89C51CC03

Flash Memory

Table 128. Timing Symbol Definitions

1		
	Sigr	nals
	S (Hardware condition)	PSEN#,EA
	R	RST
	В	FBUSY flag

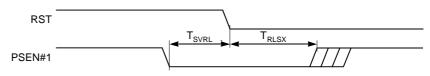

Cond	itions
L	Low
V	Valid
х	No Longer Valid

Table 129. Memory AC Timing

VDD = 3V to 5.5V, TA = -40 to $+85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Unit
T _{SVRL}	Input PSEN# Valid to RST Edge	50			ns
T _{RLSX}	Input PSEN# Hold after RST Edge	50			ns
T _{BHBL}	Flash Internal Busy (Programming) Time		10		ms

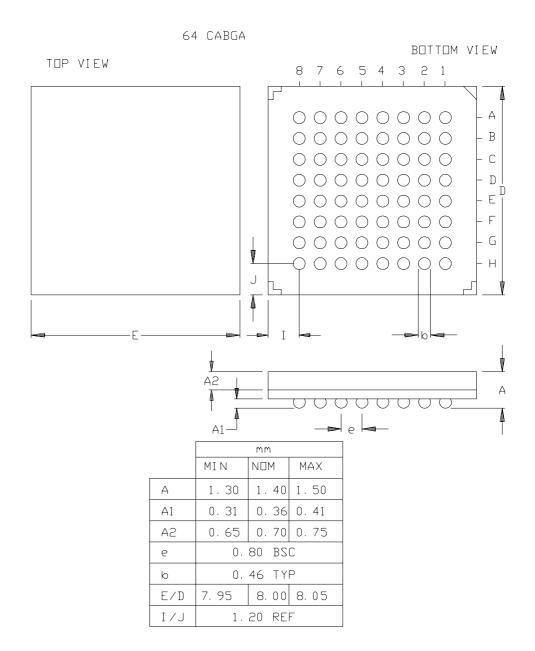
Figure 63. Flash Memory – ISP Waveforms

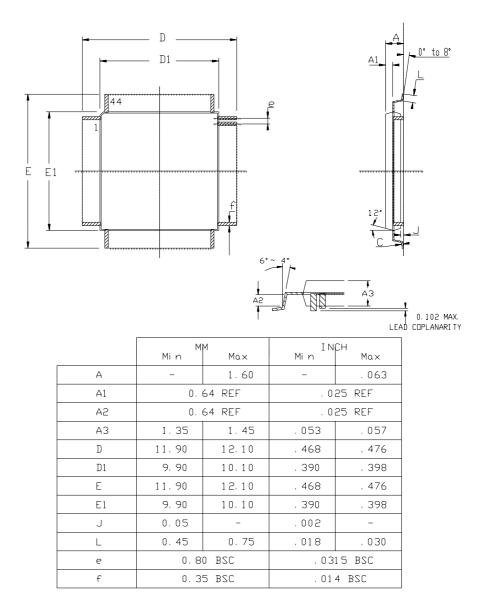
Figure 64. Flash Memory – Internal Busy Waveforms

Ordering Information

Table 130. Possible Order Entries ⁽¹	Table 130.	Possible	Order	Entries ⁽¹⁾
---	------------	----------	-------	------------------------

Part Number	Boot Loader	Temperature Range	Package	Packing
AT89C51CC03UA-7CTIM	UART	Industrial	CA-BGA	Tray
AT89C51CC03UA-RLTIM	UART	Industrial	VQFP44	Tray
AT89C51CC03UA-SLSIM	UART	Industrial	PLC44	Stick
AT89C51CC03CA-7CTIM	CAN	Industrial	CA-BGA	Tray
AT89C51CC03CA-RLTIM	CAN	Industrial	VQFP44	Tray
AT89C51CC03CA-SLSIM	CAN	Industrial	PLC44	Stick

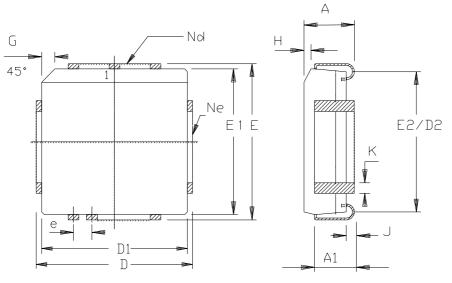

Note: 1. Ordering information will be valid when product is finalized.


Package Drawing

CA-BGA

Package Drawing

VQFP44



Package Drawing

PLCC44

	М	м·	ΙN	СН
A	4.20	4. 57	. 165	. 180
A1	2. 29	3.04	. 090	. 120
D	17.40	17.65	. 685	. 695
D1	16.44	16.66	. 647	. 656
D5	14.99	16.00	. 590	. 630
E	17.40	17.65	. 685	. 695
E1	16.44	16.66	. 647	. 656
E2	14.99	16.00	. 590	. 630
e	1.27	BSC	. 050	BSC
G	1.07	1.22	.042	. 048
н	1.07	1.42	.042	. 056
J	0.51	-	. 020	-
К	0.33	0.53	. 013	. 021
Nd	1	1	1	1
Ne	1	1	1	1
P	KG STD	00		

Table of Contents

Description 2 Block Diagram 2 Pin Configuration 3 CA-BGA64 Top View 4 I/O Configurations 7 Port 1, Port 3 and Port 4 7 Port 0 and Port 2 8 Read-Modify-Write Instructions 9 Quasi-Bidirectional Port Operation 10 SFR Mapping 11 Clock 17 Description 17 Register 20 Data Memory 21 Internal Space 22 External Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 29 Power-Down Mode 29 Power-Down Mode 29 Programming 32 Read Data 33 EEPROM Data Memory 32 Virie Data in the Column Latches 32 Programming 32 Read Data	Features	1
Pin Configuration 3 CA-BGA64 Top View 4 VO Configurations 7 Port 1, Port 3 and Port 4. 7 Port 0 and Port 2. 8 Read-Modify-Write Instructions 9 Quasi-Bidirectional Port Operation 10 SFR Mapping 11 Clock 17 Description 17 Register 20 Data Memory 21 Internal Space 22 External Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 28 Reset Recommendation to Prevent Flash Corruption 28 Idle Mode 29 Power-Down Mode 29 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Read Data 32 Read Data 32 Read Data 33 Registers <t< th=""><th>Description</th><th>2</th></t<>	Description	2
CA-BGA64 Top View 4 I/O Configurations 7 Port 1, Port 3 and Port 4. 7 Port 0 and Port 2. 8 Read-Modify-Write Instructions 9 Quasi-Bidirectional Port Operation 10 SFR Mapping 11 Clock 17 Description 17 Register 20 Data Memory 21 Internal Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 28 Reset 28 Reset Recommendation to Prevent Flash Corruption 28 Idle Mode 29 Power-Down Mode 29 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Read Data 32 Programming 33 Registers 33 Registers 33 Registers 34	Block Diagram	2
I/O Configurations 7 Port 1, Port 3 and Port 4	Pin Configuration	
Port 1, Port 3 and Port 4	CA-BGA64 Top View	
Port 0 and Port 2	I/O Configurations	7
Read-Modify-Write Instructions 9 Quasi-Bidirectional Port Operation 10 SFR Mapping 11 Clock 17 Description 17 Register 20 Data Memory 21 Internal Space 22 External Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 28 Reset 28 Reset Recommendation to Prevent Flash Corruption 28 Reset Recommendation to Prevent Flash Corruption 28 Reset Recommendation to Prevent Flash Corruption 28 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Read Data 32 Programming 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36	Port 1, Port 3 and Port 4	7
Quasi-Bidirectional Port Operation 10 SFR Mapping 11 Clock 17 Description 17 Register 20 Data Memory 21 Internal Space 22 External Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 28 Reset 28 Reset Recommendation to Prevent Flash Corruption 28 Idle Mode 29 Power-Down Mode 29 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Read Data 32 Examples 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36		
SFR Mapping 11 Clock 17 Description 17 Register 20 Data Memory 21 Internal Space 22 External Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 28 Reset 28 Reset 28 Reset 28 Nutroduction 28 Reset 29 Power-Down Mode 29 Power-Down Mode 29 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Read Data 32 Examples 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36	Read-Modify-Write Instructions	
Clock 17 Description 17 Register 20 Data Memory 21 Internal Space 22 External Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 28 Reset 28 Reset 29 Power-Down Mode 29 Power-Down Mode 29 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Registers 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36	Quasi-Bidirectional Port Operation	10
Description 17 Register 20 Data Memory 21 Internal Space 22 External Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 28 Reset 28 Reset Recommendation to Prevent Flash Corruption 28 Idle Mode 29 Power-Down Mode 29 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Registers 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36	SFR Mapping	11
Description 17 Register 20 Data Memory 21 Internal Space 22 External Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 28 Reset 28 Reset Recommendation to Prevent Flash Corruption 28 Idle Mode 29 Power-Down Mode 29 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Registers 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36	Clock	
Register 20 Data Memory 21 Internal Space 22 External Space 23 Dual Data Pointer 25 Registers 26 Power Management 28 Introduction 28 Reset 28 Reset Recommendation to Prevent Flash Corruption 28 Idle Mode 29 Power-Down Mode 29 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Read Data 32 Registers 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36		
Internal Space22External Space23Dual Data Pointer25Registers26Power Management28Introduction28Reset28Reset28Reset Recommendation to Prevent Flash Corruption28Idle Mode29Power-Down Mode29Registers31EEPROM Data Memory32Write Data in the Column Latches32Programming32Read Data32Examples33Registers34Program/Code Memory Access36		
Internal Space22External Space23Dual Data Pointer25Registers26Power Management28Introduction28Reset28Reset28Reset Recommendation to Prevent Flash Corruption28Idle Mode29Power-Down Mode29Registers31EEPROM Data Memory32Write Data in the Column Latches32Programming32Read Data32Examples33Registers34Program/Code Memory Access36		
External Space23Dual Data Pointer25Registers26Power Management28Introduction28Reset28Reset Recommendation to Prevent Flash Corruption28Idle Mode29Power-Down Mode29Registers31EEPROM Data Memory32Write Data in the Column Latches32Programming32Read Data32Examples33Registers34Program/Code Memory35External Code Memory Access36	-	
Dual Data Pointer25Registers26Power Management28Introduction28Reset28Reset Recommendation to Prevent Flash Corruption28Idle Mode29Power-Down Mode29Registers31EEPROM Data Memory32Write Data in the Column Latches32Programming32Read Data33Registers33Registers33Registers34Program/Code Memory35External Code Memory Access36	•	
Registers.26Power Management28Introduction28Reset28Reset28Reset Recommendation to Prevent Flash Corruption28Idle Mode29Power-Down Mode29Registers.31EEPROM Data Memory32Write Data in the Column Latches32Programming32Read Data33Registers.33Registers.34Program/Code Memory35External Code Memory Access36		
Power Management 28 Introduction 28 Reset 28 Reset Recommendation to Prevent Flash Corruption 28 Idle Mode 29 Power-Down Mode 29 Registers 31 EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Read Data 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36		
Introduction28Reset28Reset Recommendation to Prevent Flash Corruption28Idle Mode29Power-Down Mode29Registers31 EEPROM Data Memory32 Write Data in the Column Latches32Programming32Read Data32Examples33Registers34 Program/Code Memory35 External Code Memory Access36	Registers	
Reset28Reset Recommendation to Prevent Flash Corruption28Idle Mode29Power-Down Mode29Registers31 EEPROM Data Memory32 Write Data in the Column Latches32Programming32Read Data32Examples33Registers34 Program/Code Memory35 External Code Memory Access36	Power Management	
Reset Recommendation to Prevent Flash Corruption28Idle Mode29Power-Down Mode29Registers31 EEPROM Data Memory32 Write Data in the Column Latches32Programming32Read Data32Examples33Registers34 Program/Code Memory35 External Code Memory Access36	•	
Idle Mode29Power-Down Mode29Registers31 EEPROM Data Memory32 Write Data in the Column Latches32Programming32Read Data32Examples33Registers34 Program/Code Memory35 External Code Memory Access36	Reset	
Power-Down Mode29Registers31 EEPROM Data Memory32 Write Data in the Column Latches32Programming32Read Data32Examples33Registers34 Program/Code Memory35 External Code Memory Access36	Reset Recommendation to Prevent Flash Corruption	
Registers.31 EEPROM Data Memory32 Write Data in the Column Latches32Programming32Read Data32Examples33Registers34 Program/Code Memory35 External Code Memory Access36	Idle Mode	29
EEPROM Data Memory 32 Write Data in the Column Latches 32 Programming 32 Read Data 32 Examples 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36	Power-Down Mode	29
Write Data in the Column Latches 32 Programming 32 Read Data 32 Examples 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36	Registers	
Write Data in the Column Latches 32 Programming 32 Read Data 32 Examples 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36	EEPROM Data Memory	
Programming 32 Read Data 32 Examples 33 Registers 34 Program/Code Memory 35 External Code Memory Access 36	-	
Read Data		
Registers		
Program/Code Memory	Examples	
External Code Memory Access	Registers	
External Code Memory Access	Program/Code Memory	
	•	

AMEL_®

Registers 45 In-System Programming (ISP) 46 Flash Programming and Erasure 46 Boot Process 46 Application Programming Interface 48 XROW Bytes 49 Hardware Security Byte 50 Serial I/O Port 51 Framing Error Detection 51 Automatic Address Recognition 52 Given Address 53 Broadcast Address 53 Broadcast Address 53 Registers 54 Timer/Counter Operations 57 Timer /Counter Operations 57 Timer /Counter Operations 57 Timer 0 57 Timer 1 60 Interrupt 60 Registers 62 WatchDog Timer 71 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 77 Timer 1 (Confinement 82 Acceptance Filter 83 Data and Remote frame 84 <th></th> <th>Overview of FM0 Operations</th> <th>39</th>		Overview of FM0 Operations	39
Flash Programming and Erasure 46 Boot Process 46 Application Programming Interface 48 XROW Bytes 49 Hardware Security Byte 50 Serial I/O Port 51 Framing Error Detection 51 Automatic Address Recognition 52 Given Address 53 Broadcast Address 53 Registers 54 Timers/Counter Operations 57 Timer 0 57 Timer 1 60 Interrupt 60 Registers 62 Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller Management 75 CAN Controller Management 76 CAN Controller Management 79 Bit Timing and Baud Rate 80 Pault Confinement 82 Acceptance Filter 83 Data and Rem		Registers	45
Flash Programming and Erasure 46 Boot Process 46 Application Programming Interface 48 XROW Bytes 49 Hardware Security Byte 50 Serial I/O Port 51 Framing Error Detection 51 Automatic Address Recognition 52 Given Address 53 Broadcast Address 53 Registers 54 Timers/Counter Operations 57 Timer 0 57 Timer 1 60 Interrupt 60 Registers 62 Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller Management 75 CAN Controller Management 76 CAN Controller Management 79 Bit Timing and Baud Rate 80 Pault Confinement 82 Acceptance Filter 83 Data and Rem	In-S	ystem Programming (ISP)	46
Boot Process 46 Application Programming Interface 48 XROW Bytes 49 Hardware Security Byte 50 Serial I/O Port 51 Framing Error Detection 51 Automatic Address Recognition 52 Given Address 53 Broadcast Address 53 Broadcast Address 53 Registers 54 Timers/Counters 57 Timer O 57 Timer 0 57 Timer 0 57 Timer 1 60 Interrupt 60 Registers 62 Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 77 Tim Ting and Baud Rate 80 Fault Conf	-		
Application Programming Interface			
XROW Bytes			
Hardware Security Byte 50 Serial I/O Port 51 Framing Error Detection 51 Automatic Address Recognition. 52 Given Address 53 Broadcast Address 53 Registers 54 Timers/Counters 57 Timer/Counter Operations 57 Timer 0. 57 Timer 1 60 Interrupt 60 Registers 62 Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller Mailbox and Registers Organization 76 CAN Controller Mailbox and Registeres Organization 76			
Framing Error Detection 51 Automatic Address Recognition 52 Given Address 53 Broadcast Address 53 Registers 54 Timers/Counters 57 Timer/Counter Operations 57 Timer 0. 57 Timer 1 60 Interrupt 60 Registers 62 Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller Description 75 CAN Controller Management 77 IT CAN Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86		-	
Automatic Address Recognition 52 Given Address 53 Broadcast Address 53 Registers 54 <i>Timers/Counters</i> 57 Timer/Counter Operations 57 Timer 0. 57 Timer 1. 60 Interrupt 60 Registers 62 <i>Timer 2</i> 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 <i>WatchDog Timer</i> 71 WatchDog Timer During Power-down Mode and Idle 73 <i>CAN Controller</i> 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 77 IT CAN Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86	Seria	al I/O Port	51
Given Address 53 Broadcast Address 53 Registers 54 <i>Timers/Counters</i> 57 Timer /Counter Operations 57 Timer 0. 57 Timer 1 60 Interrupt 60 Registers 62 <i>Timer 2</i> 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 <i>WatchDog Timer</i> 71 WatchDog Timer During Power-down Mode and Idle 73 <i>CAN Controller</i> 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86		Framing Error Detection	51
Broadcast Address 53 Registers 54 Timers/Counter S 57 Timer /Counter Operations 57 Timer 0. 57 Timr 1. 60 Interrupt 60 Registers. 62 Timer 2 66 Auto-Reload Mode. 66 Programmable Clock-Output 67 Registers. 68 WatchDog Timer 71 WatchDog Togramming 72 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 83 Data and Remote frame 86 Routines Examples 86		Automatic Address Recognition	52
Registers 54 Timers/Counters 57 Timer /Counter Operations 57 Timer 0 57 Timr 1 60 Interrupt 60 Registers 62 Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86		Given Address	53
Timers/Counters 57 Timer /Counter Operations 57 Timer 0 57 Timr 1 60 Interrupt 60 Registers 62 Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Programming 72 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller 75 CAN Controller Management 77 IT CAN Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86		Broadcast Address	53
Timer/Counter Operations 57 Timer 0. 57 Timr 1. 60 Interrupt 60 Registers. 62 <i>Timer 2</i> 66 Auto-Reload Mode. 66 Programmable Clock-Output 67 Registers. 68 <i>WatchDog Timer</i> 71 WatchDog Togramming 72 WatchDog Timer During Power-down Mode and Idle 73 <i>CAN Controller</i> 75 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86		Registers	54
Timer/Counter Operations 57 Timer 0. 57 Timr 1. 60 Interrupt 60 Registers. 62 <i>Timer 2</i> 66 Auto-Reload Mode. 66 Programmable Clock-Output 67 Registers. 68 <i>WatchDog Timer</i> 71 WatchDog Togramming 72 WatchDog Timer During Power-down Mode and Idle 73 <i>CAN Controller</i> 75 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86	Time	ers/Counters	57
Timer 0. 57 Timr 1. 60 Interrupt 60 Registers. 62 <i>Timer 2</i> 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers. 68 <i>WatchDog Timer</i> 71 WatchDog Timer During Power-down Mode and Idle 73 <i>CAN Controller</i> 75 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86			
Timr 1 60 Interrupt 60 Registers 62 Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller 75 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 77 IT CAN Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86			
Registers. 62 Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers. 68 WatchDog Timer 71 WatchDog Programming 72 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller 75 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 77 IT CAN Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86			
Timer 2 66 Auto-Reload Mode 66 Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller 75 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 77 IT CAN Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86		Interrupt	60
Auto-Reload Mode		Registers	62
Programmable Clock-Output 67 Registers 68 WatchDog Timer 71 WatchDog Programming 72 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller 75 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 77 IT CAN Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86	Time	er 2	66
Registers. 68 WatchDog Timer 71 WatchDog Programming 72 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller 75 CAN Controller Description. 75 CAN Controller Mailbox and Registers Organization. 76 CAN Controller Management. 77 IT CAN Management. 77 Bit Timing and Baud Rate. 80 Fault Confinement 82 Acceptance Filter. 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86		Auto-Reload Mode	66
WatchDog Timer 71 WatchDog Programming 72 WatchDog Timer During Power-down Mode and Idle 73 CAN Controller 75 CAN Controller Description 75 CAN Controller Mailbox and Registers Organization 76 CAN Controller Management 77 IT CAN Management 79 Bit Timing and Baud Rate 80 Fault Confinement 82 Acceptance Filter 83 Data and Remote frame 84 Time Trigger Communication (TTC) and Message Stamping 85 CAN Autobaud and Listening Mode 86		Programmable Clock-Output	67
WatchDog Programming72WatchDog Timer During Power-down Mode and Idle73CAN Controller75CAN Controller Description75CAN Controller Mailbox and Registers Organization76CAN Controller Management77IT CAN Management79Bit Timing and Baud Rate80Fault Confinement82Acceptance Filter83Data and Remote frame84Time Trigger Communication (TTC) and Message Stamping85CAN Autobaud and Listening Mode86Routines Examples86		Registers	68
WatchDog Programming72WatchDog Timer During Power-down Mode and Idle73CAN Controller75CAN Controller Description75CAN Controller Mailbox and Registers Organization76CAN Controller Management77IT CAN Management79Bit Timing and Baud Rate80Fault Confinement82Acceptance Filter83Data and Remote frame84Time Trigger Communication (TTC) and Message Stamping85CAN Autobaud and Listening Mode86Routines Examples86	Wate	chDog Timer	71
CAN Controller75CAN Controller Description.75CAN Controller Mailbox and Registers Organization.76CAN Controller Management.77IT CAN Management.79Bit Timing and Baud Rate.80Fault Confinement82Acceptance Filter83Data and Remote frame84Time Trigger Communication (TTC) and Message Stamping85CAN Autobaud and Listening Mode86Routines Examples86		WatchDog Programming	72
CAN Controller Description			
CAN Controller Description	CAN	Controller	75
CAN Controller Mailbox and Registers Organization.76CAN Controller Management.77IT CAN Management.79Bit Timing and Baud Rate.80Fault Confinement .82Acceptance Filter .83Data and Remote frame .84Time Trigger Communication (TTC) and Message Stamping			75
CAN Controller Management.77IT CAN Management.79Bit Timing and Baud Rate.80Fault Confinement .82Acceptance Filter .83Data and Remote frame .84Time Trigger Communication (TTC) and Message Stamping .85CAN Autobaud and Listening Mode .86Routines Examples .86		•	
IT CAN Management79Bit Timing and Baud Rate80Fault Confinement82Acceptance Filter83Data and Remote frame84Time Trigger Communication (TTC) and Message Stamping85CAN Autobaud and Listening Mode86Routines Examples86			
Bit Timing and Baud Rate80Fault Confinement82Acceptance Filter83Data and Remote frame84Time Trigger Communication (TTC) and Message Stamping85CAN Autobaud and Listening Mode86Routines Examples86		-	
Fault Confinement82Acceptance Filter83Data and Remote frame84Time Trigger Communication (TTC) and Message Stamping85CAN Autobaud and Listening Mode86Routines Examples86		.	
Acceptance Filter83Data and Remote frame84Time Trigger Communication (TTC) and Message Stamping85CAN Autobaud and Listening Mode86Routines Examples86		-	
Data and Remote frame84Time Trigger Communication (TTC) and Message Stamping85CAN Autobaud and Listening Mode86Routines Examples86			
Time Trigger Communication (TTC) and Message Stamping		•	
CAN Autobaud and Listening Mode			
Routines Examples			
•		-	
		•	

AT89C51CC03

ii

AT89C51CC03

Registers	90
Programmable Counter Array (PCA)	. 112
PCA Timer	
PCA modules	113
PCA Interrupt	114
PCA Capture Mode	114
16-bit Software Timer Mode	115
High Speed Output Mode	116
Pulse Width Modulator Mode	116
PCA WatchDog Timer	117
PCA Registers	118
Analog-to-Digital Converter (ADC)	. 123
Features	123
ADC Port1 I/O Functions	123
ADC Converter Operation	125
Voltage Conversion	
Clock Selection	125
ADC Standby Mode	126
IT ADC Management	126
Routines examples	126
Registers	127
Interrupt System	. 129
Introduction	
Registers	
Electrical Characteristics	. 137
Absolute Maximum Ratings	
DC Parameters for Standard Voltage	
DC Parameters for A/D Converter	
AC Parameters	
Ordering Information	. 150
Package Drawing	151
CA-BGA	
Package Drawing	152
VQFP44	
V SCI 1 TT	102
Package Drawing	153
PLCC44	

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site

http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® is a registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

Printed on recycled paper.