PAW3020J1: Optical Finger Navigation (OFN) Module

General Description

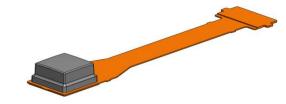
The PAW3020J1 is a small form factor (SFF) Optical Finger Navigation (OFN) module. It is for finger control of the invehicle infotainment system. It is capable of finger motion speed detection – up to 14 ips on small area of touch cover window. The XY navigation output comes with finger movement.

In addition, it has an on-chip oscillator and integrated LED to minimize external components. There are no moving parts, thus provide high reliability and less maintenance for the end users. Precision optical alignment is also not required, facilitating high volume assembly. The chip is programmed via registers through either I2C or SPI interface port. It is packaged into an 18-pin FPC module for ease of assembly via ZIF connector.

Key Features

- Automotive grade device
- Compliant to AEC-Q100 grade 3
- Precise optical motion estimation technology
- Motion detection up to 14 inches/sec
- Resolution : 200 ~ 2000 CPI (counts per inch)
- Operation mode
 - Free navigation mode
 - Directional modes 2 / 4 / 8 directions
- Hardware reset for flexible system control
- Sunlight resistant

Applications


- In-Vehicle Infotainment System
- Finger navigation in HID

Key Parameters

Parameter	Value
Operating Temperature	-40 ~ 85°C
	VDDM : 3.0V ~ 3.6V
Supply Voltage	VDDIO : 1.62 ~ 3.6V
	$VDDIO \leq VDDM$
Interface	4-wire SPI/I2C
Tracking speed	Max 14 inches/sec
CPI Resolution	200/400/500/600/800 /1000(default)/1200/1600 /2000 CPI
Operating Current Note: Including LED current	Typical : 3.5mA (with I/O toggle) W/O finger touch: 11mA Sleep mode: 2mA
Package	18-pin FPC module with 0.5mm contact pitch

Ordering Information

Part Number	Part Description						
PAW3020J1	Optical Finger Navigation Module						
170302031	opticul i ingel i turigation intouu						

For any additional inquiries, please contact us at http://www.pixart.com/contact.asp

Version 0.9 | 2019.07.05 | F21002EN

SEE. FEEL. TOUCH.

PixArt Imaging Inc. <u>http://www.pixart.com</u>

Optical Finger Navigation Module

Table of Contents

PAW3020J1: Optical Finger Navigation (OFN) Module	
General Description	
Key Features	
Applications	
Key Parameters	
Ordering Information	
Table of Contents	2
List of Figures	
List of Tables	
1.0 Introduction	
1.1 Overview	
1.2 Signal Pin Definition	5
2.0 Mechanical Specifications	6
3.0 Electrical Specifications	7
3.1 Absolute Maximum Ratings	7
3.2 Recommended Operating Conditions	7
3.3 AC Electrical Characteristics	
3.4 DC Electrical Characteristics	
4.0 System Design	9
4.1 Application Circuit	9
5.0 Power-up Sequence Requirement	
6.0 Serial Interface	
6.1 Four-Wire SPI Interface	
6.1.1 Transmission Protocol	
6.1.2 Write Operation	
6.1.3 Read Operation	
6.1.4 Timing Specifications	
6.2 I2C Interface	
6.2.1 I2C Bus Overview	
6.2.2 Data Transfer Format	
6.2.3 I2C Bus Timing	
7.0 Functional Operation	
7.1 Software Power Down Mode	
7.3 Reading the Motion, Direction Data and calculating Firmware Touch Value	
8.0 Registers List	
8.1 Register Map	

Version 0.9 | 2019.07.05 | F21002EN

SEE. FEEL. TOUCH.

PixArt Imaging Inc. http://www.pixart.com

PAW3020J1 Product Datasheet

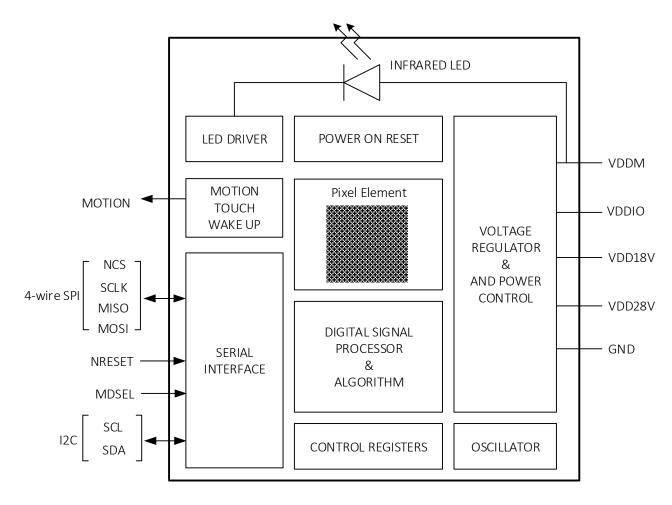
Optical Finger Navigation Module

8.2	Register Description)
Docume	ent Revision History)

List of Figures

Figure 1. Block Diagram
Figure 2. OFN Module Outline Drawing
Figure 3. Application Circuits of OFN Modules9
Figure 4. Power Sequence
Figure 5. Transmission Protocol11
Figure 6. Write Operation
Figure 7. Read Operation12
Figure 8. NCS vs SCLK Timing Requirement
Figure 9. MOSI setup and hold time during write operation12
Figure 10. Start and Stop conditions14
Figure 11. Valid Data14
Figure 12. Write cycle
Figure 13. Read cycle
Figure 14. I2C Bus Timing
Figure 15. Power-down17
Figure 16. Read Direction Data with Polling Mode

List of Tables


Table 1. Absolute Maximum Ratings	7
Table 2. Recommended Operating Conditions	7
Table 3. AC Electrical Characteristics	8
Table 4. DC Electrical Characteristics	8
Table 5. SPI Timing Specifications	13
Table 6. I2C Slave Address	14
Table 7. I2C Bus Timing Specification	16
Table 8. BankO Register Map	19
Table 9. Bank1 Register Map	20

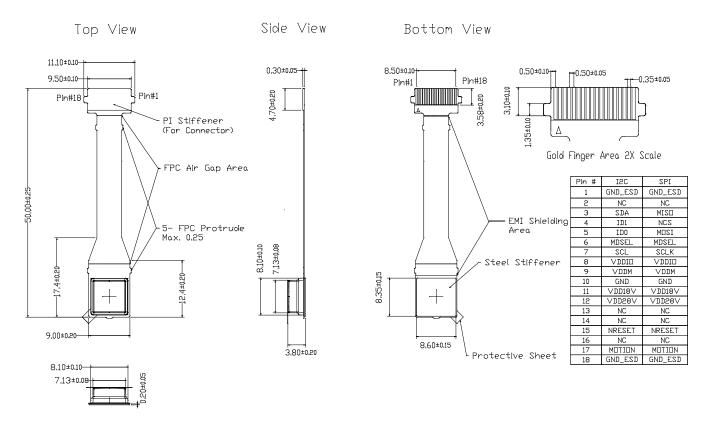
1.0 Introduction

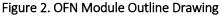
1.1 Overview

The PAW3020J1 is a FPC module consists of OFN chip, optical lens and lens cover. The OFN chip is a high performance and low power CMOS-process optical chip with integrated DSP serving as a non-mechanical motion estimation engine for finger touch navigation. An infrared LED is integrated in the OFN module, serving as the light source. It is based on optical navigation technology which measures variation in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement. The movement of ΔX and ΔY are available in the registers accessed via serial port.

The word "module" instead of PAW3020J1, is used in this document.

PAW3020J1 Product Datasheet


Optical Finger Navigation Module


1.2 Signal Pin Definition

D': //	Signal Name		T				
Pin #	I2C	4-wire SPI	Туре	Pin Definition			
1	GND_ESD	GND_ESD	GND	Ground for enhancing ESD protection.			
2	NC	NC	NC	No connection			
3	SDA	MISO	I/O	SDA pin for I2C interface MISO pin for 4-wire SPI interface			
4	ID1	NCS	IN	Slave ID selection for I2C interface NCS pin for 4-wire SPI interface (low active)			
5	IDO	MOSI	IN	Slave ID selection for I2C interface MOSI pin for 4-wire SPI interface			
6	MDSEL	MDSEL	IN	To select I2C or 4-wire SPI interface Low : I2C interface High : 4-wire SPI interface			
7	SCL	SCLK	IN	Clock pin for I2C / 4-wire SPI			
8	VDDIO	VDDIO	PWR	I/O power supply (1.62V ~ 3.6V) VDDIO \leq VDDM			
9	VDDM	VDDM	PWR	Main power supply (3.0V ~ 3.6V)			
10	GND	GND	GND	Ground			
11	VDD18V	VDD18V	PWR	Internal regulator output and should be connected a 0.22uF capacitor to ground			
12	VDD28V	VDD28V	PWR	Internal regulator output and should be connected a 0.1uF capacitor to ground			
13	NC	NC	NC	No connection			
14	NC	NC	NC	No connection			
15	NRESET	NRESET	IN	System reset (low active)			
16	NC	NC	NC	No connection			
17	MOTION	MOTION	OUT	Motion interrupt (low active)			
18	GND_ESD	GND_ESD	GND	Ground for enhancing ESD protection.			

SEE. FEEL. TOUCH.

2.0 Mechanical Specifications

Version 0.9 | 2019.07.05 | F21002EN

SEE. FEEL. TOUCH.

PixArt Imaging Inc. http://www.pixart.com

3.0 Electrical Specifications

3.1 Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T _{STG}	Storage Temperature	-40	105	°C	
ТА	Operating Temperature	-40	85	°C	
VDDM	DC Supply Voltage	3.0	3.6	V	VDDIO ≦ VDDM
VDDIO	DC Input Voltage	1.62	3.6	V	All I/O pin, VDDIO ≦ VDDM
ESD _{I2C_A}	Air ESD for I2C		+/- 25	kV	Air ESD for I2C interface
ESD _{12C_C}	Contact ESD for I2C		+/- 15	kV	Contact ESD for I2C interface
ESD _{4SPI_A}	Air ESD for 4SPI		+/- 25	kV	Air ESD for 4SPI interface
ESD_{4SPI_C}	Contact ESD for 4SPI		+/- 15	kV	Contact ESD for 4SPI interface

3.2 Recommended Operating Conditions

Table 2. Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit	Notes
T _A	Operating Temperature	-40	-	85	°C	
VDDM	Power Supply Voltage	3.0	3.3	3.6	V	VDDIO ≦ VDDM
VDDIO	IO Supply Voltage	1.62	3.3	3.6	V	VDDIO ≦ VDDM
V _{Npp}	Supply Noise	-	-	100	mV	Peak to peak within 10k – 80 MHz
R	Resolution	200	1000	2000	CPI	
S C V	SPI Clock Frequency	-	-	1	MHz	
SCK	I2C Clock Frequency	-	-	400	kHz	
S	Speed	-	-	14	ips	Inches per second

SEE. FEEL. TOUCH.

PixArt Imaging Inc. http://www.pixart.com

3.3 AC Electrical Characteristics

Electrical Characteristics are defined under recommended operating conditions. Typical values at 25 $^{\circ}$ C, VDDIO = 3.3V for 3.3V application.

Table 3. AC Electrical Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes	
t _{pDR}	PD Pulse Register	-	-	800	us	2 frames time maximum after setting <i>PD_enh</i> bit in the <i>Configuration</i> register @ half full frame rate (refer to Figure 15. Power-down).	
t _{delay}	Address and data delay time	2.75			us	refer to Figure 7.	
t _r ,t _f	Rise and Fall Times: SDA		-	300	ns		
t _{reset}	Data ready time after Reset	1			ms	Data ready time after SW or HW Reset	

3.4 DC Electrical Characteristics

Electrical Characteristics are defined under recommended operating conditions. Typical working temperature is 25 °C. VDDIO=3.3V+/-10%.

Table 4. DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{DDN}	Supply Current for Chip OFM Moving (Normal)	-	1.7		mA	No including LED current, w/o interface I/O toggle
I _{LEDN}	Supply Current for LED OFM Moving (Normal)	-	1.8		mA	@LED_Step = 13
I _{N_FINGER}	Supply Current W/O finger touch		11		mA	
I _{DDPD}	Supply Current for Chip (Power Down)	-	10	-	uA	
I _{sleep}	Supply Current for whole module at sleep mode		2		mA	
V _{IH}	Input Voltage HIGH	0.8*VDDIO	-		V	@VDDIO = 3.3V; @VDDIO = 1.62V
V _{IL}	Input Voltage LOW			0.2*VDDIO	V	@VDDIO = 3.3V; @VDDIO = 1.62V

SEE. FEEL. TOUCH.

PixArt Imaging Inc. <u>http://www.pixart.com</u>

4.0 System Design

4.1 Application Circuit

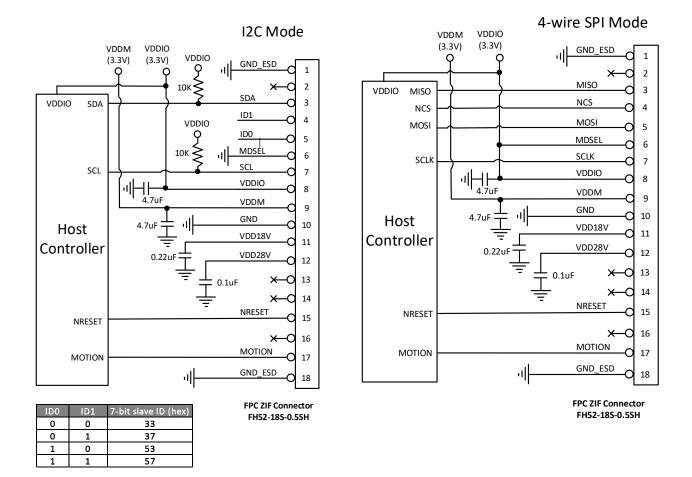


Figure 3. Application Circuits of OFN Modules

Version 0.9 | 2019.07.05 | F21002EN

SEE. FEEL. TOUCH.

PixArt Imaging Inc. http://www.pixart.com

5.0 Power-up Sequence Requirements

If the VDDIO and VDDM for the chip are not sourced from the same power supplies input, a power-up sequence is applicable on these two power inputs to avoid excessive current leakage or occurrence of unexpected system instability happening on the chip.

- 1. VDDM must be powered up first or at the same time with VDDIO ($T1 \ge 0$). VDDIO can never be powered up earlier than VDDM.
- 2. MDSEL must toggle at the same time with VDDIO.
- 3. NRESET must power up later than VDDM ($T2 \ge 0$).

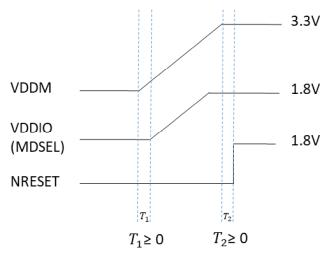


Figure 4. Power sequence

Version 0.9 | 2019.07.05 | F21002EN

SEE. FEEL. TOUCH.

6.0 Serial Interface

The synchronous serial port is used to set and read parameters in the chip.

6.1 Four-Wire SPI Interface

- NCS: Chip select line, low active (Generally named SPI_CS).
- SCK: Serial clock line, generated by the host controller.
- MOSI: Serial data line, used to write data to chip.
- MISO: Serial data line, used to read data from chip.

6.1.1 Transmission Protocol

The transmission protocol is a 4-wire link, half duplex protocol between the micro-controller and the chip. All data changes on MOSI/MISO are latched at SCK rising edge. The host controller always initiates communication and the chip never initiates data transfers.

The transmission protocol consists of the two operation modes:

- Write Operation.
- Read Operation.

Both of the two operation modes consist of two bytes. The first byte contains the address (seven bits) and has a bit 7 as its MSB to indicate data direction. The second byte contains the data.

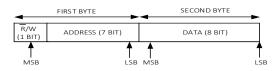


Figure 5. Transmission Protocol

6.1.2 Write Operation

A write operation, which means that data is going from the host controller to the chip, is always initiated by the controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. The transfer is synchronized by SCK. The controller changes MOSI at SCK falling edges. The chip reads MOSI at SCK rising edges.

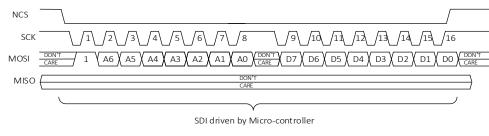


Figure 6. Write Operation

6.1.3 Read Operation

A read operation, which means that data is going from the chip to the controller, is always initiated by the HOST controller and consists of two bytes. The first byte contains the address, is written by the controller, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by the chip. The transfer is synchronized by SCK.

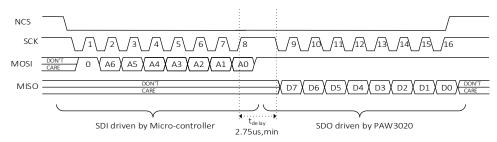
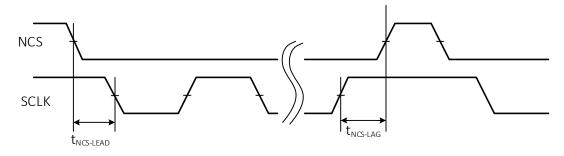



Figure 7. Read Operation

6.1.4 Timing Specifications

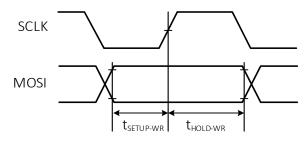


Figure 9. MOSI setup and hold time during write operation

PixArt Imaging Inc. http://www.pixart.com

PAW3020J1 Product Datasheet

Optical Finger Navigation Module

Table 5. SPI Timing Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
SCLK frequency	F _{SCLK}	-	-	1	MHz	SPI max. operation frequency
NCS Enable Lead Time	t _{NCS-LEAD}	2.75	-	-	μs	From NCS falling to first SCLK falling
NCS Enable Lag Time	t _{NCS-LAG}	2.75	-	-	us	From Last SCLK rising to NCS rising
SCLK delay for Data Preparation	t _{delay}	2.75	-	-	us	The min. time between the rising of 8 th SCLK and the falling of 8 th SCLK
MOSI Write Setup Time	t _{setup-wr}	1/8T	-	-	ns	SDA data valid before SCLK rising
MOSI Write Hold Time	t _{HOLD-WR}	1/4T	-	-	ns	SDA data valid after SCLK rising
MOSI Read Hold Time	t _{HOLD-RD}	-	3	-	us	SDA data valid after SCLK rising
MOSI Rise Time	t _{sda-r}	-	30	-	ns	@C _L = 30 pF
MOSI Fall Time	t _{sda-f}	-	30	-	ns	@C _L = 30 pF

Note: All the parameters are tested under operating conditions: V_{DDM} = 3.3V and T_A = 25°C. T = SPI clock (SCK)

Version 0.9 | 2019.07.05 | F21002EN

SEE. FEEL. TOUCH.

6.2 I2C Interface

- SCK: Serial clock line, generated by the host controller (Generally named SCL).
- SDA: Serial data line, used to read data from chip (Generally named SDA).

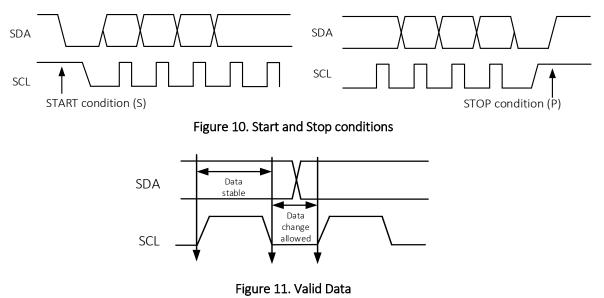

PAW3020J1 supports I2C bus transfer protocol and acts as slave device. The 7-bits selectable slave address is depending on ID0 and ID1 input pin state and supports receiving / transmitting speed as maximum 400kHz.

Table 6. I2C Slave Address

ID0	ID1	7-bit slave address (hex)		
Low	Low	33		
Low	High	37		
High	Low	53		
High	High	57		

6.2.1 I2C Bus Overview

- Only two wires SDA (serial data) and SCK (serial clock) carry information between the devices connected to the I2C bus. Normally both SDA and SCK lines are open collector structure and pulled high by external pull-up resistors.
- Only the master can initiate a transfer (start condition), generates clock signals, and terminates a transfer (stop condition).
- Start and stop condition: A high to low transition of the SDA line while SCK is high defines a start condition. A low to high transition of the SDA line while SCK is high defines a stop condition. Please refer to Figure 10.
- Valid data: The data on the SDA line must be stable during the high period of the SCK clock. Within each byte, MSB is always transferred first. Read / Write control bit is the LSB of the first byte. Please refer to Figure .
- Both the master and slave can transmit and receive data from the bus.
- Acknowledge: The receiving device should pull down the SDA line during high period of the SCK clock line when a
 complete byte was transferred by transmitter. In the case of a master received data from a slave, the master does not
 generate an acknowledgment on the last byte to indicate the end of a master read cycle.

Version 0.9 | 2019.07.05 | F21002EN

SEE. FEEL. TOUCH.

PixArt Imaging Inc. <u>http://www.pixart.com</u>

6.2.2 Data Transfer Format

6.2.2.1 Master Transmits Data to Slave (Write Cycle)

S: Start.

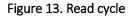
A : Acknowledge by salve.

P:Stop.

RW : The LSB of 1ST byte to decide whether current cycle is read or write cycle.

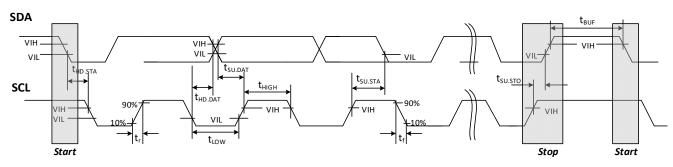
RW = 1 - Read cycle, RW = 0 - Write cycle.

ADDRESS : The address values of PAW3020J1 internal control registers.


Figure 12. Write cycle

During write cycle, the master generates start condition and then places the 1st byte data that are combined slave ID (7 bits) with a read / write control bit to SDA line. After slave (PAW3020J1) issues acknowledgment, the master places 2nd byte (Address) data on SDA line. Again follow the PAW3020J1 acknowledgment, the master places the 8 bits data on SDA line and transmit to PAW3020J1 control register (address was assigned by 2nd byte). After PAW3020J1 issue acknowledgment, the master can generate a stop condition to end of this write cycle.

6.2.2.2 Slave Transmits Data to Master (Read Cycle)


During read cycle, the master generates start condition and then places the 1st byte data that are combined slave ID (7 bits) with a read / write control bit to SDA line. After issue acknowledgment, 8 bits DATA was also placed on SDA line by PAW3020J1. The 8 bits data was read from PAW3020J1 internal control register that address was assigned by previous write cycle. If the host intends to terminate the transfer, it responds with not acknowledge (NA, SDA = 1), and then drives SDA to generate a STOP condition.

Optical Finger Navigation Module

6.2.3 I2C Bus Timing

Figure 14. I2C Bus Timing

Table 7. I2C Bus Timing Specification

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
SCL clock frequency.	F _{scl}	-	-	400	kHz	
Hold time for Start/Repeat Start. After this period, the first clock pulse is generated.	t _{HD.STA}	0.6	-	-	μs	
Set-up time for a repeated Start.	t _{su.sta}	0.6	-	-	μs	
Low period of SCL clock.	t_{LOW}	1.3	-	-	μs	
High period of SCL clock.	t _{HIGH}	0.6	I	-	μs	
Data hold time.	t _{HD.DAT}	0	-	-	μs	
Data set-up time.	t _{su.dat}	250	-	-	ns	
Rise time of both SDA and SCL signals.	tr	-	-	300	ns	
Fall time of both SDA and SCL signals.	t _f	-	-	300	ns	
Set-up time for STOP condition.	t _{su.sto}	0.6	-	-	μs	
Bus free time between a STOP and START.	t _{BUF}	1.3	-	-	μs	

7.0 Functional Operation

7.1 Software Power Down Mode

The chip can be placed in a power-down mode by setting *PD_enh* bit in the *Configuration* register via a serial port write operation. After setting the *Configuration* register, wait at most 2 frames times. To get the chip out of the power down mode, clear *PD_enh* bit in the *Configuration* register via a serial port write operation. In the power down mode, the serial interface still can read/write normally. For an accurate report after leave the power down mode, wait about 3ms before the HOST controller is able to issue any write/read operation to the chip.

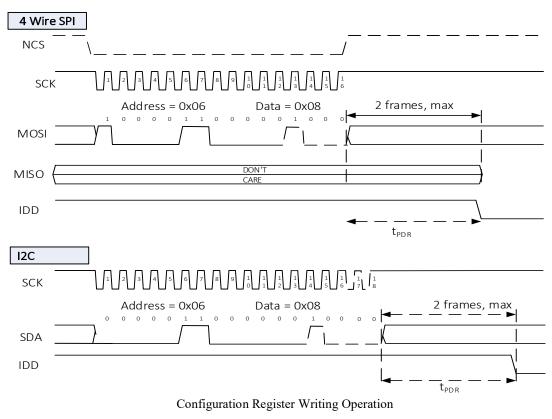


Figure 15. Power-down

Version 0.9 | 2019.07.05 | F21002EN

SEE. FEEL. TOUCH.

7.2 Reading the Motion, Direction Data and calculating Firmware Touch Value

- Whenever the chip detects the occurrence of motion, the detected motion data (X-movement and Y-movement) is accumulated and stored in chip's internal buffer.
- The host controller can read out direction value through register Delta_X, Delta_Y and Direction_Value (address 0x03, 0x04, 0x34).
- Before reading the motion data through these registers, do ensure to read register Motion_Status (address 0x02) first to check if the MOTION bit (bit 7) is 1.
- If the MOTION bit is 1, the data in register Delta_X, Delta_Y and Direction_Value is valid, otherwise it is invalid.
- If firmware touch function is required, read out the corresponding registers and calculate the Firmware touch value as the sample code which described in PAW3020 Application Note.
- The host controller can use the following polling mode to read out the chip motion data.
 - By reading and checking register Motion_Status (address 0x02) periodically, the host controller can get the motion data in a simple way through I²C or SPI interface.
 - Be noticed that the 2ms shown in the flowchart below is a recommended value. The delay time might depend on the capability of the host controller to cater for the need of different applications.

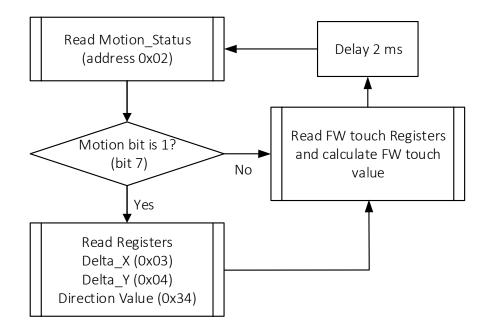


Figure 16. Read Direction Data with Polling Mode