GateMate™ FPGA Suitable from university projects up to high volume applications Supported by: on the basis of a decision by the German Bundestag ## Overview The GateMate™ FPGA family of Cologne Chip™ AG addresses all application requirements of small to medium size FPGAs. Very low power and speed applications are feasible. Logic capacity, power consumption, package size and PCB compatibility are best in class. GateMate™ FPGAs combine these features with lowest cost in industry making the devices well suited from University projects to high volume applications. Because of the outstanding Circuit size/Cost ratio, even new applications now can use the benefits of FPGAs. All this is based on a novel FPGA architecture combining a special logic element called Cologne Programmable Element (CPE) with a smart routing engine. Furthermore, arbitrary size Multipliers are usable. Memory aware applications can use block dual-port SRAMs with bit widths from 1 to 80 bits. Even bit-wise enable is feasible. General Purpose IOs (GPIOs) can use different voltage levels from 1.2 to 2.5 Volt. GPIOs can be configured as single-ended or LVDS differential type. Furthermore a high speed SERDES interface is available. GateMate[™] FPGAs are supported by EasyConvert[™], that enables the transfer of existing FPGA designs without new synthesis. Worldclass P&R-software maps and implements the design into GateMate™ FPGA. A Static Timing Analysis (STA) is also performed and gives evidence about critical pathes and the overall performance of a design. The design can be easily simulated using Verilog netlist and SDF timing extraction. The devices are manufactured using Globalfoundries[™] 28 nm SLP (Super Low Power) process. Due to manufacturing in Europe, there is no danger of trade restrictions or high taxation. > Complimentary design conversion service FBGA 320 ball 15x15 mm with 0.8 mm ball pitch package of GateMate™ CCGM1A1 ## GateMate™ Features - Logic capacity from 40.000 to more than a million LUT-4 equivalent cells - DPSRAM 1.280 Mbit - Novel architecture with new programmable element (CPE) - CPE consists of LUT tree with 8 inputs - 3 operation areas: low power, economy, speed - FPGA in ball grid package for low size and high pin count - Pricing starts from \$US 10 for GateMate[™] CCGM1A1 device in volume quantities - Design conversion service free of charge for GateMate[™] customers - Only 2 signal layers on PCB necessary - Low configuration bit count - Very fast configuration using 4 bit SPI interface up to 100 MHz - No excessive start-up currents Multiple clocking schemas designed and manufactured in Germany - Only two supply voltages needed, that can be applied in any order - Dual-ported Block RAMs with 1-80 bits data width, also configurable as FIFO - Multipliers with arbitrary factor sizes implementable - SERDES 2.5 Gb/s - General Purpose IOs (GPIO) configurable as single-ended or differential (LVDS) - Pullup/Pulldown resistors configurable - Support for ADC and DAC with additional IP cores - Core voltage depending on application mode: 0.9 V, 1.0 V, 1.1 V - Low Power 28 nm SLP Globalfoundries[™] process technology - Made in Europe - EasyConvert[™] software to migrate existing designs to GateMate[™] - GateMate[™] Place&Route with automatic clock Skew analysis and fixing - Static Timing Analysis for performance evaluation - Available in different size versions (see table) | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | |---|--------------|---------------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---| | A | GND | SER_
TX_N | SER_
TX_P | GND | IO_N1
_A2 | IO_N1
_A3 | VDD_N1 | IO_N1
_A6 | IO_N1
_A8 | IO_N2
_A1 | IO_N2
_A3 | GND | IO_N2
_A5 | IO_N2
_A7 | IO_E2
_B8 | IO_E2
_B7 | IO_E2
A7 | GND | A | | В | SER
RX_P | SER_
RTERM | VDO_
SER_PLL | IO_N1
_B0 | IO_N1
_B2 | IO_N1
_B3 | GND | IO_N1
_B6 | IO_N1
_B8 | IO_N2
_B1 | IO_N2
_B3 | VDD
N2 | IO_N2
_B5 | IO_N2
_B7 | IO_E2
_A8 | GND | VDD
E2 | IO_E2
B6 | В | | С | SER
RX_N | VDD_
SER | POR_
ADJ | IO_N1
_A0 | IO_N1
_B1 | VD0
_N1 | IO_N1
_B4 | IO_N1
_B5 | IO_N1
_B7 | IO_N2
_B0 | 10_N2
_B2 | GND | IO_N2
_B4 | 10_N2
_B6 | IO_N2
_B8 | IO_E2
_A5 | IO_E2
_B5 | IO_E2
_A6 | C | | D | GND | CLK | TST | RST_N | IO_N1
_A1 | GND | IO_N1
_A4 | IO_N1
_A5 | IO_N1
_A7 | IO_N2
_A0 | IO_N2
_A2 | VDD
_N2 | IO_N2
_A4 | IO_N2
_A6 | IO_N2
_A8 | GND | IO_E2
_B4 | IO_E2
_A4 | D | | E | CLK_B | GND | GND | VDD
CLK | VDD
PLL | GND | VDD
_N1 | GND | VDD
_N1 | GND | VDD
N2 | GND | GND | VDD
N2 | GND | VDD
E2 | GND | VDD
_E2 | E | | F | IO_W2
_B7 | IO_W2
_A7 | IO_W2
_A8 | IO_W2
_B8 | GND | | GND | VDD
_N1 | GND | VDD | GND | VDD
_N2 | | GND | IO_E2
_A2 | IO_E2
_B2 | IO_E2
_B3 | IO_E2
_A3 | F | | G | IO_W2
_B5 | IO_W2
_A5 | IO_W2 | 10_W2
_B6 | VDD
_W2 | GND | VDD | GND | | GND | VDD | GND | VDD
_E2 | VDD
_E2 | IO_E2
_A0 | IO_E2
_B0 | IO_E2
_B1 | IO_E2
_A1 | G | | Н | GND | VDD
WZ | GND | VDD
WZ | GND | VDO
W2 | GND | VDD | GND | VDO | GND | VDD | GND | GND | IO_E1 | IO_E1
_B7 | IO_E1
_B8 | IO_E1
_A8 | Н | | J | IO_W2
_B3 | IO_W2
_A3 | IO_W2
_A4 | IO_W2
_B4 | VDD
W2 | GND | VDD | GND | VDD | GND | VDD | GND | VDD | VDD
E1 | IO_E1
_A5 | IO_E1
_B5 | IO_E1
_86 | IO_E1
_A6 | J | | K | IO_W2
_B1 | IO_W2
_A1 | IO_W2
_A2 | IO_W2
_B2 | GND | | GND | | GND | VDO | GND | | GND | GND | VDD
_E1 | GND | VDD
_E1 | GND | K | | L | IO_W2
_B0 | IO_W2
_A0 | 10_W1
_A8 | 10_W1
_B8 | VDD
_W1 | GND | VDD | GND | | GND | VDD | GND | VDD
_E1 | GND | IO_E1
_A3 | IO_E1
_B3 | IO_E1
_84 | IO_E1
_A4 | L | | M | IO_W1
_B7 | IO_W1
_A7 | IO_W1
_A6 | 10_W1
_B6 | VDD
_W1 | VDO
_W1 | GND | VDD | GND | VDO | GND | VDD | VDD
_S2 | VDD
_E1 | IO_E1
_A1 | IO_E1
_B1 | IO_E1
_B2 | IO_E1
_A2 | N | | N | IO_W1
_B5 | 10_W1
_A5 | IO_W1
_A4 | IO_W1
_B4 | GND | | VDD
_S3 | GND | | GND | VDD
_S1 | GND | | VDD
_S2 | IO_E1
_A0 | IO_E1
_B0 | IO_S2
_B8 | IO_S2
_A8 | N | | P | GND | VDD
W1 | GND | VDD
W1 | IO_W1
_B3 | GND | GND | VDD
53 | GND | VDD
51 | GND | VDD
S1 | VDD
52 | GND | IO_52
_A6 | 10_S2
_B6 | 10_52
_B7 | 10_52
_A7 | P | | R | IO_WI
_B2 | IO_W1
_A2 | 10_W1
_B1 | IO_W1 | IO_W1
_A3 | VDD
S3 | JTAG
TCK | SPI_
D1 | IO_S1
_A0 | IO_S1
_A2 | VDD
_S1 | IO_51
_Ã4 | IO_51
_A6 | IO_52
_A0 | IO_52
_A2 | GND | VDD
_S2 | GND | R | | Т | IO_W1
_B0 | IO_W1
A0 | CFG
MD0 | CFG_
MD1 | JTAG_
TDI | GND | SPI_
FWD | SPI_
DO | IO_S1
_B0 | 10_S1
_B2 | GND | IO_S1
_B4 | IO_S1
_B6 | 10_S2
_B0 | IO_S2
_B2 | IO_S2
_A4 | IO_S2
_B4 | IO_S2
85 | Т | | J | CFG
MD2 | CFG_
MD3 | VDD
S3 | GND | JTAG
TMS | VDD
S3 | SPI
D2 | SPI_
CLK | IO_S1
_B1 | 10_S1
_B3 | VDD
_S1 | IO_S1
_B5 | 10_S1
_B7 | IO_S1
_B8 | IO_52
_B1 | GND | VDD
_S2 | IO_52
A5 | U | | V | GND | CFG
FAILED
N | CFG_
DONE | POR_
EN | JTAG_
TDO | GND | SPI_
D3 | SPI_
CS_N | IO_51
_A1 | IO_S1
_A3 | GND | IO_S1
_A5 | IO_51
_A7 | IO_51
_A8 | IO_52
_A1 | IO_52
_A3 | IO_52
_B3 | GND | ٧ | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | Package Connections of **GateMate[™] CCGM1A1** with ball positions and signal names | Device | Rel. size | Size Cologne Programmable Elements 1) 2) | | | | Block RAM 3) | | SERDES | I/Os | | Package | | |----------|-----------|--|-----------------|------------|-------|--------------|-----|--------|--------------|--------------|---------|-----------| | | | CPEs | 8-Inp-LUT trees | FF/Latches | 20Kb | 40Kb | | | single-ended | differential | balls | size (mm) | | CCGM1A1 | 1 | 20,480 | 20,480 | 40,960 | 64 | 32 | 4 | 1 | 162 | 81 | 320BGA | 15x15 | | CCGM1A2 | 2 | 40,960 | 40,960 | 81,920 | 128 | 64 | 8 | 2 | 162 | 81 | 320BGA | 15x15 | | CCGM1A4 | 4 | 81,920 | 81,920 | 163,840 | 256 | 128 | 16 | 4 | 162 | 81 | 320BGA | 15x15 | | CCGM1A9 | 9 | 184,320 | 184,320 | 368,640 | 576 | 288 | 36 | 9 | tbd | tbd | tbd | tbd | | CCGM1A16 | 16 | 327,680 | 327,680 | 655,360 | 1,024 | 512 | 64 | 16 | tbd | tbd | tbd | tbd | | CCGM1A25 | 25 | 512,000 | 512,000 | 1,024,000 | 1,600 | 800 | 100 | 25 | tbd | tbd | tbd | tbd | 1) CPEs have 2x4 or 8 inputs connected to a LUT tree 2) Each CPE can be used as 2x2 Multiplier tile 3) Block RAM can have a data width of 1-80 bits Cologne Chip AG Eintrachtstr. 113 50668 Koeln, Germany eMail: info@colognechip.com Web: www.colognechip.com Tel: +49.221.91240