

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	A B
CUSTOMER PART NO.	
AMPIRE PART NO.	AM800480AQTZQW-00H
APPROVED BY	
DATE	

□ Approved For Specifications □ Approved For Specifications & Sample

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

22181 新北市 汐止區 新台五路一段 116 號 4 樓(東方科學園區 A 棟) TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

Revision Date	Page	Contents	Editor
Revision Date 2015/4/8	Page	Image: Contents New Release	Editor KOKAI

RECORD OF REVISION

1. INTRODUCTION

The LCD module is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. It is composed of a TFT LCD panel, a backlight system, column driver and row driver circuit. This TFT LCD has a 7-inch diagonally measured active display area with WVGA resolution (800 horizontal by 480 vertical pixels array).

2. PHYSICAL SPECIFICATIONS

Item	Specifications	Remark
LCD size	7 inch(Diagonal)	
Active area	152.4(W) x 91.44 (H) mm	
Number of Pixels	800(H) × 3 (RGB) × 480(V)	
Color arrangement	R.G.B-stripe	
Display mode	Normally Black	
Number of Colors	16.7M	
Brightness (cd/m^2)	500nit(min) / 600nit(typ)	
Contrast Ratio	900:1(Typ.)/ 600:1(min)	
Viewing Angle (CP > 10)	170degree (Horizontal.)	
	170degree (Vertical)	
Interface	TTL RGB	
Module Size (mm)	165.0(H) x 104.0(V) x 7.87 (D)	
Module Weight (g)	T.B.D (typ)	
Backlight Unit	LED	
Surface Treatment	Anti-Glare	

ltem	Symbol	Min.	Max.	Unit	Note
	DVDD	-0.3	+5.0	V	Digital power supply voltage
Supply voltage range)	AVDD	-0.5	+13.5	V	Analog power supply voltage
	VGH	-0.3	+42	V	Gate On voltage
	VGL	-20	+0.3	V	Gate Off voltage
Gate On – Gate Off voltage	VGH-VGL	12	40	V	
Forward Current (per LED)	lf		30	mA	
Reverse Voltage (per LED)	VR		5	v	
Pulse forward current (per LED)	lfp		100	mA	(2)
Operating Temperature	Тор	-30	+85	°C	(1)
Storage Temperature	Tstg	-40	+90	°C	(1)

3. ABSOLUTE MAX. RATINGS

(Note 1) If the product were used out of the operation and storage range, it will have quality issue.

(Note 2) Ifp Conditions ~:~ Pulse Width $\leq\!10msec$, Duty $\leq\!1/10_{\circ}$

(Note 3) Each one of LED operation must be follow diagram of Ambient Temperature and Allowable Forward Current.

(Note 4) If users use the product out off the environmental operation range

(temperature and humidity) , it will have visual quality concerns.

EL	ECTR	CHAR/	ACTER	ISTICS

ltem	Symbol	Min.	Тур.	Max.	Unit	Note
Digital Supply Voltage	DVDD	3.0	3.3	3.6	V	\sim \sim
Analog Supply Voltage	AVDD	(12.85)	(13)	(13.15)	V	
Gate On Voltage	VGH	19	20	20	v	
Gate Off Voltage	VGL	-6.6	-6	-5.4	V	
Common Voltage	VCOM		T.B.D	人	V	Note 2
	VIH	0.7DVDD		DVDD	v	
	VIL	GND		0.3DVDD	V	
Digital Supply Current	IDVDD		T.B.D		mA	Note 1
Analog Supply Current	IAVDD		T.B.D	Y	mA	Note 1
Gate On Current	IVGH		T.B.D		mA	Note 1
Gate Off Current	IVGL	(T.B.D		mA	Note 1

3.1. Power Specification

Note1: Ta=25°C , Display pattern :

• Typical :256 fray pattern

Maximum: Black Pattern

Note2: TYP VCOM is only reference value. It must be optimized according to each LCM. Be sure to use VR and OP buffer on VCOM output. Please adjust VCOM to make the flicker level be minimum for getting excellent image.

3.2. LED BACKLIGHT DRIVER UNIT

ltem	Symbol	Min.	Тур.	Max.	Unit	Note
LED Forward Current	IF	Y	160		mA	Ta=25℃ (40mA/series)
LED Forward Voltage	VF	15.3	18	20.7	V	IF=40mA/series, Ta=25℃
Power consumption	WL	5		2.88	W	IF=40mA/series, Ta=25℃
LED Lifetime	An		30000		Hr	IF=40mA/series, Ta=60℃

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: the structure of LED B/L shows as below.

Note 3: Using the constant current control to avoid the leakage light and brightness quality issue.

Note 4: Definition of Led lifetime : Luminance < Initial luminance 70%.

ltom	Symbol	Condition		Values		llmit	Domorik
item	Symbol	Condition	Min	Тур	Max	Unit	Remark
	θL	θ=180°(9 o'clock)	75	85	-	$\mathbf{\nabla}$	
Viewing angle	θr	θ=0°(3 o'clock)	75	85	- (degree	(1) (2) (2)
(CR≥ 10)	θτ	θ=90°(12 o'clock)	75	85	\langle	degree	(1),(2),(3)
	θв	θ=270°(6 o'clock)	75	85			
Response time	Tr+Tf		-	25	35	Msec	(1),(2),(5)
Contrast ratio	CR		600	900		-	(1),(2),(4)
Color	Wx	Normal	0.273	0.313	0.353	-	(1) (2)
chromaticity	Wy	Point-5	0.289	0.329	0.369	-	(1),(2)
Luminance	L		500	600		cd/m ²	(1),(2)
Luminance uniformity	Yυ		80	85	-	%	(1),(2),(6)
NTSC	-	Point-5		72	-	%	(1),(2)

4. Optical Specifications

Note (1) Measurement Setup:

The LCD module should be stabilized at given temperature(25° C) for 15 minutes to Avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

Note (2) The LED input parameter setting IL=160mA (Back-light current)

Note (4) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255, L0: Luminance of gray level 0

Note (5) Definition of Response Time (TR, TF)

Fig. 6-3 Definition of response time

Note (6) Definition of Brightness Luminance and Luminance Uniformity Brightness luminance = the luminance of gray level 255 at point 5

5. INTERFACE

5.1. CN1:

6. Pin No	Symbol	I/O	Function
1	AGND	Р	Analog Ground
2	AVDD	Р	Analog Power
3	DVDD	Р	Digital Power
4	R0	I	Data Input(LSB)
5	R1	I	Data Input
6	R2		Data Input
7	R3	I	Data Input
8	R4	I	Data Input
9	R5		Data Input
10	R6	I	Data Input
11	R7		Data Input(MSB)
12	G0	I	Data Input(LSB)
13	G1	I	Data Input
14	G2	I	Data Input
15	G3		Data Input
16	G4	I	Data Input
17	G5	I	Data Input
18	G6	I	Data Input
19	G7	I	Data Input(MSB)
20	B0	I	Data Input(LSB)
21	B1	I	Data Input
22	B2	I	Data Input
23	B3		Data Input
24	B4		Data Input
25	B5		Data Input
26	B6		Data Input
27	B7		Data Input(MSB)
28	DCLK		Clock Input
29	DEO	Υ	Data Enable signal
30	HSD	- I	Horizontal sync input. Negative polarity
31	VSD	I	Vertical sync input. Negative polarity
20	MODE	I	DE/SYNC mode select .normally pull high
52	MODE		H:DE mode .L:HSD/VSD mode
		I	Global reset pin. Active low to enter reset state. suggest to
33	RSTB		connecting with an RC reset circuit for stability.
	V		normally pull high. (R=47K ohm, C=1uF)
			Standby mode, normally pull high
34	STBYB		STRVR="0" timming control source driver will turn off all locut
			are high-Z

35	SHLR	I	Right or Left sequence control . (Note 1)
36	DVDD	Р	Digital Power
37	UPDN	I	Up or down scan control. (Note 1)
38	GND	Р	Digital Ground
39	AGND	Р	Analog Ground
40	AVDD	Р	Analog Power
41	VCOM	Р	Common Voltage
42	NC	-	Not connect
43	NC	-	Not connect
44	NC	-	Not connect
45	NC	-	Not connect
46	NC	-	Not connect
47	NC	-	Not connect
48	NC	-	Not connect
49	NC	-	Not connect
50	NC	-	Not connect
51	NC	-	Not connect
52	NC	-	Not connect
53	NC	-	Not connect
54	NC	-	Not connect
55	NC	-	Not connect
56	VGH	Р	Positive Power for TFT
57	DVDD	Р	Digital Power
58	VGL	Ρ	Negative Power for TFT
59	GND	Р	Digital Ground
60	NC	-	Not connect

(Note 1)

SHLR	UPDN	Data shifting
DVDD	GND	Left→Right · Up→Down(default)
GND	GND	Right→Left · Up→Down
DVDD	DVDD	Left→Right · Down→Up
GND	DVDD	Right→Left · Down→Up

Inn

Definition of scanning direction.

Pin No.	Symbol	I/O	Description	Note
1	A	Р	Anode	
2	A	Р	Anode	
3	A	P	Anode	
4	NC		No Connection	
5	K1	Р	Cathode 1	
6	K2	Р	Cathode 2	
7	K3	р	Cathode 3	
8	K4	р	Cathode 4	
9	NC		No Connection	
10	NC		No Connection	

6.1. CN2 LED Back-light

7. AC Timing characteristic

ITEM		SYMBOL	MIN.	TYP.	MAX.	UNIT	Note
DCLK	Dot Clock	1/t _{CLK}	26	29	33	MHz	
	DCLK pulse duty	Tcwh	40	50	60	%	
	Setup Time	Tesu	4	- 1	-	ns	
DE	Hold time	Tehd	2	-	-	ns	
	Horizontal Period	t _H	908	928	948	t _{CLK}	
	Horizontal Valid	t _{HA}	800			t _{CLK}	5
	Horizontal Blank	t _{HB}	108	128	148	t _{CLK}	
	Vertical Period	t _V	515	525	535	t _H	
	Vertical Valid	t _{VA}	480			t _H	
	Vertical Blank	t _{VB}	35	45	55	t _H	
SYNC	HSYNC Setup Time	Thst	4		-	ns	
	HSYNC Hold Time	Thhd	2	-	-	ns	
	VSYNC Setup Time	Tvst	4	-	-	ns	
	VSYNC Hold Time	Tvhd	2	-		ns	
	Horizontal Period	th	908	928	948	t _{CLK}	
	Horizontal Pulse Width	thpw		48	-	t _{CLK}	thb + thpw=88DCLK is
	Horizontal Back Porch	thb	~	40		t _{CLK}	fixed
	Horizontal Front Porch	thfp	20	40	60	t _{CLK}	
	Horizontal Valid	thd	800		t _{CLK}		
	Vertical Period	tv	1	525	-	th	
	Vertical Pulse Width	tvpw		3		th	tvpw + tvb = 32th is fixed
	Vertical Back Porch	tvb	-	29	-	th	
	Vertical Front Porch	tvfp	3	13	23	th	
	Vertical Valid	tvd	480		th		
DATA	Setup Time	Tdsu	4	20	121	ns	
	Hold Time	Tdhd	2	-	-	ns	

7.1. Timing characteristic of Panel (DE only mode)

DE mode

Horizontal timing :

Vertical timing :

7.2. Power ON/OFF Timing

Power On : DVDD→AVDD/VGL→VGH→Video &Logic Signal Power Off : Video &Logic Signal→VGH→AVDD/VGL→DVDD

8. RELIABILITY TEST CONDITIONS

Test Item	Test Conditions	Note
High Temperature Operation	85±3°C , t=240 hrs	
Low Temperature Operation	-30±3°C , t=240 hrs	
High Temperature Storage	90±3°C , t=240 hrs	1,2
Low Temperature Storage	-40±3°C , t=240 hrs	1,2
Thermal Shock Test	-30°C ~ 85°C 30 m in. ~ 30 min. (1 cycle) Total 100cycle	1,2
Humidity Test	60 °C, Humidity 90%, 240 hrs	1,2
Vibration Test (Packing)	Sweep frequency : 10 ~ 500 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	2
Image Sticking	25 ℃±2 ℃ ; 2hrs	3

Note 1 : Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions

(15-35°C , 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

Note 3 : Operation with test pattern sustained for 2 hours, then change to gray pattern immediately. After 5 mins, the mura must be disappeared completely .

Image Sticking -pattern

256-Gray pattern

9. USE PRECAUTIONS

9.1. Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

9.2. Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

9.3. Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

9.4. Operating precautions

- Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.

8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

9.5. Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

10. OUTLINE DIMENSION

